Skip to main content

Advertisement

Log in

Species richness, abundance, rarity and environmental gradients in coastal barren vegetation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Coastal barrens in Nova Scotia are heathlands characterised by short, predominantly ericaceous vegetation, sparse tree cover, exposed bedrock, pockets of Sphagnum bog, and stressful climatic conditions. Although coastal barrens are prominent in the physical and cultural landscape, they are largely unprotected. We selected six barrens along the Atlantic coast, and surveyed 20 1-m2 plots at each barren for vascular plants, macrolichens, mosses and environmental factors. We recorded 173 species (105 vascular, 41 macrolichen, 27 moss), including six provincially rare vascular species found predominantly in nearshore areas with high levels of substrate salt and nutrients, variable substrate depth, and short vegetation. Although vascular plant and moss richness were similarly correlated with vegetation height, substrate depth, organic matter content, and rock exposure, there were no clear correlations between vascular plant, macrolichen and moss richness across all sites. Vascular plant rarity and species richness were not correlated, but had inverse relationships with key environmental gradients. Tailoring conservation efforts to protect areas of high richness may thus mean that rare species are missed, and vice versa. Ordination and ANOSIM show that barrens vegetation differs widely among sites; therefore, protecting any singular coastal barren will not protect the entire range of vegetation communities and species in this heathland type. Conservation planning should emphasize protecting environmental gradients correlated with richness, rarity and plant community structure, including substrate depth and moisture, and vegetation height. Additionally, protected areas should include a coastal-inland gradient and a diversity of substrate types, including exposed rock and trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DCA:

Detrended correspondence analysis

ANOSIM:

Analysis of similarities

PCA:

Principal components analysis

CV:

Coefficient of variation

OHV:

Off-highway vehicle

References

  • Araújo MB, Humphries CJ, Densham PJ, Lampinen R, Hagemeijer WJM, Mitchell-Jones AJ, Gasc JP (2001) Would environmental diversity be a good surrogate for species diversity? Ecography 24:103–110. doi:10.1034/j.1600-0587.2001.240112.x

    Article  Google Scholar 

  • Armstrong D (2002) Focal and surrogate species: getting the language right. Conserv Biol 16(2):285–286. doi:10.1046/j.1523-1739.2002.00109.x

    Article  Google Scholar 

  • Asselin H, Belleau A, Bergeron Y (2006) Factors responsible for the co-occurrence of forested and unforested rock outcrops in the boreal forest. Landsc Ecol 21:271–280. doi:10.1007/s10980-005-1393-1

    Article  Google Scholar 

  • Atlantic Canada Conservation Data Centre (ACCDC) (2006). Provincial species rankings, Nova Scotia vascular plants. http://www.accdc.com/webranks/htmvas/nsvasc.htm. Accessed 9 Nov 2006

  • Bartolomé J, Plaixats J, Fanlo R, Boada M (2005) Conservation of isolated Atlantic heathlands in the Mediterranean region: effects of land-use changes in the Montseny biosphere reserve (Spain). Biol Conserv 122(1):81–88. doi:10.1016/j.biocon.2004.05.024

    Article  Google Scholar 

  • Bates JW (1975) A quantitative investigation of the saxicolous bryophyte and lichen vegetation of cape clear Island, County Cork. Ecology 63(1):143–162. doi:10.2307/2258848

    Article  Google Scholar 

  • Belcher JW, Keddy PA, Catling PM (1992) Alvar vegetation in Canada: a multivariate description at two scales. Can J Bot 70:1279–1291. doi:10.1139/b92-161

    Article  Google Scholar 

  • Berendse F (1994) Litter decomposability—a neglected component of plant fitness. J Ecol 82:187–190. doi:10.2307/2261398

    Article  Google Scholar 

  • Bradley R, Fyles JW, Titus BD (1997a) Interactions between Kalmia humus quality and chronic low C inputs in controlling microbial and soil nutrient dynamics. Soil Biol Biochem 29:1275–1283. doi:10.1016/S0038-0717(97)00018-7

    Article  CAS  Google Scholar 

  • Bradley R, Titus BD, Fyles JW (1997b) Nitrogen acquisition and competitive ability of Kalmia angustifolia, birch, and spruce seedlings on different humus forms. Plant Soil 195:209–220. doi:10.1023/A:1004263716346

    Article  CAS  Google Scholar 

  • Bradley R, Titus BD, Preston CP (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol Biochem 32:1227–1240. doi:10.1016/S0038-0717(00)00039-0

    Article  CAS  Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Brosofske KD, Chen J, Crow TR (2001) Understory vegetation and site factors: implications for a managed Wisconsin landscape. For Ecol Manag 146:75–87. doi:10.1016/S0378-1127(00)00447-3

    Article  Google Scholar 

  • Brown RT, Mikola P (1974) The influence of fruticose soil lichens upon the mycorrhizae and seedling growth of forest trees. Acta For Fenn 141:1–23

    Google Scholar 

  • Canals RM, Sebastia MT (2002) Heathland dynamics in biotically disturbed areas: on the role of some features enhancing heath success. Acta Oecol 23:303–312. doi:10.1016/S1146-609X(02)01159-1

    Article  Google Scholar 

  • Catling P, Carbyn S (2005) Invasive Scots Pine, Pinus sylvestris, replacing Corema, Corema conradii, heathland in the Annapolis valley, Nova Scotia. Can Field Nat 119(2):237–244

    Google Scholar 

  • Chapman MG, Underwood AJ (1999) Ecological patterns in multivariate assemblages: information and interpretation of negative values in Anosim tests. Mar Ecol Prog Ser 180:257–265

    Article  Google Scholar 

  • Chase MK, Kristan WB, Lynam AJ, Price M, Rotenberry JT (2000) Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals. Conserv Biol 14:474–487. doi:10.1046/j.1523-1739.2000.98312.x

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. Primer-E Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E Ltd, Plymouth

    Google Scholar 

  • Crites S, Dale M (1988) Diversity and abundance of bryophytes, lichens, and fungi in relation to wood substrate and successional stage in aspen mixedwood boreal forests. Can J Bot 76:641–651. doi:10.1139/cjb-76-4-641

    Article  Google Scholar 

  • DeVelice RL, DeVelice JW, Park GN (1988) Gradient analysis in nature reserve design: a New Zealand example. Conserv Biol 2(2):206–217. doi:10.1111/j.1523-1739.1988.tb00171.x

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16(11):646–655. doi:10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Dunwiddie PW (1990) Rare plants in coastal heathlands: observations on Corema conradii (Empetraceae) and Hetianthemum dumosum (Cistaceae). Rhodora 96:22–26

    Google Scholar 

  • Dunwiddie PW (1997) Long-term effects of sheep grazing on coastal sandplain vegetation. Nat Areas J 17:261–264

    Google Scholar 

  • Dunwiddie PW, Zaremba RE, Harper KA (1996) A classification of coastal heathlands and sandplain grasslands in Massachusetts. Rhodora 98(894):117–145

    Google Scholar 

  • Faith DP (2003) Environmental diversity (ED) as surrogate information for species-level biodiversity. Ecography 26:374–379. doi:10.1034/j.1600-0587.2003.03300.x

    Article  Google Scholar 

  • Faith DP, Ferrier S (2002) Linking beta diversity, environmental variation, and biodiversity assessment. Science 296 [Online E-letter]. (14 Jan 2008) http://www.sciencemag.org/cgi/eletters/295/5555/636

  • Fenton N, Frego KA (2005) Bryophyte (moss and liverwort) conservation under remnant canopy in managed forests. Biol Conserv 122(3):417–430. doi:10.1016/j.biocon.2004.09.003

    Article  Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51(2):331–363. doi:10.1080/10635150252899806

    Article  PubMed  Google Scholar 

  • Foster DR, Motzkin G (2003) Interpreting and conserving the openland habitats of coastal New England: insights from landscape history. For Ecol Manag 185:127–150. doi:10.1016/S0378-1127(03)00251-2

    Article  Google Scholar 

  • Gallet S, Roze F (2002) Long-term effects of trampling on Atlantic heathland in Brittany (France): resilience and tolerance in relation to season and meteorological conditions. Biol Conserv 103:267–275. doi:10.1016/S0006-3207(01)00137-9

    Article  Google Scholar 

  • Geological Survey of Canada–Atlantic (1987–1993) Aerial video surveys: the coastline of Nova Scotia. Nova Scotia field tapes, DVD

  • Graniero PA, Price JS (1999) The importance of topographic factors on the distribution of bog and heath in a Newfoundland blanket bog complex. Catena 36:233–254. doi:10.1016/S0341-8162(99)00008-9

    Article  Google Scholar 

  • Griffiths ME (2006) Salt spray and edaphic factors maintain dwarf stature and community composition in coastal sandplain heathlands. Plant Ecol 186:69–86. doi:10.1007/s11258-006-9113-8

    Article  Google Scholar 

  • Griffiths ME, Orians CM (2003) Salt spray differentially affects water status, necrosis, and growth in coastal sandplain heathland species. Am J Bot 90:1188–1196. doi:10.3732/ajb.90.8.1188

    Article  Google Scholar 

  • Griffiths ME, Orians CM (2004) Salt spray effects on forest succession in rare coastal sandplain heathlands: evidence from field surveys and Pinus rigida transplant experiments. J Torrey Bot Soc 131:23–31. doi:10.2307/4126925

    Article  Google Scholar 

  • Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol 29(3):241–246. doi:10.1016/j.actao.2005.10.007

    Article  Google Scholar 

  • Heino J, Mykrä H (2006) Assessing physical surrogates for biodiversity: do tributary and stream type classifications reflect macroinvertebrate assemblage diversity in running waters? Biol Conserv 129(3):418–426. doi:10.1016/j.biocon.2005.11.009

    Article  Google Scholar 

  • Houle G, Filion L (2003) The effects of lichens on white spruce seedling establishment and juvenile growth in a spruce-lichen woodland of subarctic Quebec. Ecoscience 10:80–84

    Google Scholar 

  • Humphries CJ, Williams PH, Wright RIV (1995) Measuring biodiversity value for conservation. Annu Rev Ecol Syst 26:93–111

    Article  Google Scholar 

  • Hunter ML, Jacobson GL, Webb T (1988) Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv Biol 2(4):375–385

    Article  Google Scholar 

  • Inderjit , Mallik AU (1996a) Growth and physiological responses of black spruce (Picea mariana) to sites dominated by Ledum groenlandicum. J Chem Ecol 22:575–585

    Article  CAS  Google Scholar 

  • Inderjit , Mallik AU (1996b) The nature of interference potential of Kalmia angustifolia. Can J For Res 26:1899–1904

    Article  Google Scholar 

  • Inderjit , Mallik AU (1999) Nutrient status of black spruce (Picea mariana) forest soils dominated by Kalmia angustifolia. Acta Oecol 20:87–92

    Article  Google Scholar 

  • Ireland RR (1982) Moss flora of the maritime provinces. National Museums of Canada, Publications in Botany, no. 13, Ottawa

    Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Article  Google Scholar 

  • Kershaw KA (1977) Studies on lichen-dominated ecosystems: an examination of some aspects of the northern boreal lichen woodlands in Canada. Can J Bot 55:393–410

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin Cummings, New York

    Google Scholar 

  • Latham RE (2003) Shrubland longevity and rare plant species in the northeastern United States. For Ecol Manag 185:21–39

    Article  Google Scholar 

  • Lesica P, McCune B, Cooper SV, Hong WS (1991) Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley Montana. Can J Bot 69:1745–1755

    Article  Google Scholar 

  • Lõhmus A, Lõhmus P, Vellak K (2007) Substratum diversity explains landscape-scale co-variation in the species-richness of bryophytes and lichens. Biol Conserv 135(3):405–414

    Article  Google Scholar 

  • Lorimer CG, White AS (2003) Scale and frequency of natural disturbances in the northeastern United States: implications for early-successional forest habitats and regional age distributions. For Ecol Manag 185:41–64

    Article  Google Scholar 

  • Lowday JE, Marrs RH (1992) Control of bracken and the restoration of heathland. I. Control of bracken. J Appl Ecol 29:195–203

    Article  Google Scholar 

  • Mallik AU (1993) Ecology of a forest weed of Newfoundland: vegetative regeneration strategy of Kalmia angustifolia. Can J Bot 71:161–166

    Article  Google Scholar 

  • Mallik AU (1995) Conversion of temperate forests into heaths: role of ecosystem disturbance and ericaceous plants. J Environ Manag 19:675–684

    Article  Google Scholar 

  • Mallik AU (2001) Black spruce and understory species diversity with and without sheep laurel. Agron J 93:92–98

    CAS  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  PubMed  CAS  Google Scholar 

  • Martine CT, Lubertazzi D, Dubrul A (2005) The Biology of Corema conradii: natural history, reproduction, and observations of a post-fire seedling recruitment. Northeast Nat 12(3):267–286

    Article  Google Scholar 

  • Meades WJ (1983) The origin and successional status of anthropogenic dwarf shrub heath in Newfoundland. Adv Space Res 2:97–101

    Article  Google Scholar 

  • Mitchell RJ, Marrs RH, Le Duc MG, Auld MHD (1997) A study of succession on lowland heaths in Dorset, southern England: changes in vegetation and soil chemical properties. J Appl Ecol 34:1426–1444

    Article  Google Scholar 

  • Motzkin G, Foster DR (2002) Grasslands, heathlands and shrublands in coastal New England: historical interpretations and approaches to conservation. J Biogeogr 29:1569–1590

    Article  Google Scholar 

  • Nash TH, Lange OL (1988) Responses of lichens to salinity: concentration and time-course relationships and variability among Californian species. New Phytol 109(3):361–367

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Nova Scotia Museum of Natural History (1997a) Natural history of Nova Scotia volume II: topics and habitats. Nova Scotia Museum of Natural History, Nova Scotia

    Google Scholar 

  • Nova Scotia Museum of Natural History (1997b) Natural history of Nova Scotia volume II: theme regions. Nova Scotia Museum of Natural History, Nova Scotia

    Google Scholar 

  • Oberndorfer EC (2006) Plant, macrolichen and moss community structure and species richness in the coastal barrens of Nova Scotia. MSc Thesis, Saint Mary’s University, Halifax

  • Odé B, Groen K, De Blust G (2001) Het Nederlandse en Vlaamse heidelandschap. De Levende Nat 102:145–149

    Google Scholar 

  • Økland R (1990) Vegetation ecology, theory, methods and applications with reference to Fennoscandia. Sommerfeltia Supplement. Botanical Garden and Museum, University of Oslo, Oslo, p 154

    Google Scholar 

  • O’Toole E (2006) Regeneration characteristics of coastal barren plant species. Bachelor of Science thesis, Saint Mary’s University, Halifax

  • Piessens K, Hermy M (2006) Does the heathland flora in north-western Belgium show an extinction debt? Biol Conserv 132(3):382–394

    Article  Google Scholar 

  • Piessens K, Honnay O, Hermy M (2005) The role of fragment area and isolation in the conservation of heathland species. Biol Conserv 122:61–69

    Article  Google Scholar 

  • Piessens K, Honnay O, Devlaeminck R, Hermy M (2006) Biotic and abiotic edge effects in highly fragmented heathlands adjacent to cropland and forest. Agric Ecosyst Environ 114:335–342

    Article  Google Scholar 

  • Pipp AK, Henderson C, Callaway RM (2001) Effects of forest age and forest structure on epiphytic lichen biomass and diversity in a Douglas-fir forest. Northwest Sci 75:12–24

    Google Scholar 

  • Putwain PD, Gilham DA (1990) The significance of the dormant viable seed bank in the restoration of heathlands. Biol Conserv 52:1–16

    Article  Google Scholar 

  • Ramsay PM, Fotherby RM (2007) Implications of the spatial pattern of Vigur’s Eyebright (Euphrasia vigursii) for heathland management. Basic Appl Ecol 8(3):242–251

    Article  Google Scholar 

  • Rocheleau A, Houle G (2001) Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae). Am J Bot 88:659–666

    Article  PubMed  Google Scholar 

  • Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161

    Article  Google Scholar 

  • Rose RJ, Webb NR, Clarke RT, Traynor CH (2000) Changes on the heathlands in Dorset, England, between 1987 and 1996. Biol Conserv 93:117–125

    Article  Google Scholar 

  • Rutter N (1965) Tattering flags under controlled conditions. Nature 205:168–169

    Article  Google Scholar 

  • Saetersdal M, Gjerde I, Blom HH, Ihlen PG, Myrseth EW, Pommeresche R, Skartveit J, Solhoy T, Aas O (2004) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol Conserv 115:21–31

    Article  Google Scholar 

  • Sanderson NA (1996) New forest heathland management and lichens. Botanical Survey and Assessment for the British Lichen Society, Hampshire

    Google Scholar 

  • Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M (2004) Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–649

    Article  CAS  Google Scholar 

  • Sedia EG, Ehrenfield JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458

    Article  Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystone: is single-species management passé in the landscape era? Biol Conserv 83(3):247–257

    Article  Google Scholar 

  • Slayter RO (1967) Plant-water relationships. Academic Press, London

    Google Scholar 

  • Su J, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18(1):167–173

    Article  Google Scholar 

  • ter Braak C, Šmilauer P (1998) CANOCO for Windows version 4.2. Center for biometry Wagenin. CPRO-DLO, Wageningen

    Google Scholar 

  • Terry AC, Ashmore MR, Power SA, Allchin EA, Heil GW (2004) Modelling the impacts of atmospheric nitrogen deposition on Calluna-dominated ecosystems in the UK. J Appl Ecol 41:897–909

    Article  Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405:208–211

    Article  PubMed  CAS  Google Scholar 

  • Tombleson JD (1982) The use of “tatter” flags as a measure of exposure. A review of overseas and New Zealand experience. Production Forestry Division Project Record 135, Project No FE33. Production Forestry Division, Forest Research Institute, Rotorua

  • Tombleson JD, Bowles GP, Lyford W (1982) Tatter flags as a measure of exposure, Kimberly Hill, Aupouri. Production Forestry Division Project Record Project No. FE33, Report 136

  • Tubbs CR (1974) Heathland management in the New Forest, Hampshire, England. Biol Conserv 6(4):303–306

    Article  Google Scholar 

  • Tybirk K, Nilsson MC, Michelson A, Kristensen HL, Shevtsova A, Strandberg MT, Johansson M, Nielsen KE, Riis-Nielsen T, Strandberg B, Johnsen I (2000) Nordic Empetrum dominated ecosystems: function and susceptibility to environmental changes. AMBIO 29(2):90–97

    Google Scholar 

  • Uliczka H, Angelstam P (2000) Assessing conservation values of forest stands based on specialized lichens and birds. Biol Conserv 95:343–351

    Article  Google Scholar 

  • USDA Fire Effects Information Service: Empetrum nigrum. [Online] (14 Jan 2008). http://www.fs.fed.us/database/feis/plants/shrub/empnig/all.html

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990

    Google Scholar 

  • Wessels KJ, Freitag S, van Jaarsveld AS (1999) The use of land facets as biodiversity surrogates during reserve selection at a local scale. Biol Conserv 89:21–38

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Wilcox DA (1984) The effects of NaCl deicing salts on Sphagnum recurvum. Environ Exp Bot 24(4):295–301

    Article  Google Scholar 

  • Williams P, Faith D, Manne L, Sechrest W, Preston C (2006) Complementary analysis: mapping the performance of surrogates for biodiversity. Biol Conserv 128:253–264

    Article  Google Scholar 

  • Wohlgemuth T (1998) Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodivers Conserv 7:159–177

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Katherine Frego for her thorough and thoughtful review of a previous version of this manuscript. We also thank Dr. Hugh Broders and Dr. Pierre Jutras for their editing and direction. Many thanks to field assistants Scott Burley, Jill DiPenta, Erin O’Toole, and Sarah Robinson, Greg Baker for GIS expertise, and Dr. Irwin Brodo, Frances Anderson, Sean Blaney, Anne Mills, and Dr. Tyler Smith for assistance with specimen identification. We also thank Jean and Cecil Davis of Isle Madame for their warm hospitality. Funding for this research was provided by Mountain Equipment Co-op, Saint Mary’s University and the National Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Lundholm.

Appendices

Appendix 1

Calculation of plot-level measures of temporal and spatial moisture variability using subplot volumetric substrate moisture content.

  • 1. Temporal mean:

  • a. mean substrate moisture content values from all corners of a single plot for each sampling date (n = 5 dates)

  • b. mean of the five means from a.

  • 2. Temporal range:

  • a. mean substrate moisture content values from all corners of a single plot for each sampling date (n = 5 dates)

  • b. difference between the maximum and minimum substrate moisture content values (the mean plot substrate moisture content from the wettest sampling date—the mean plot substrate moisture content from the driest sampling date).

  • 3. Temporal coefficient of variation (CV)

  • a. mean substrate moisture content values from all corners of a single plot for each sampling date (n = 5 dates)

  • b. standard deviation of five mean substrate moisture content values from a

  • c. b divided by a.

  • 4. Maximum spatial substrate moisture content

  • a. mean substrate moisture content values from all corners of a single plot for each sampling date (n = 5 dates)

  • b. maximum plot-level substrate moisture content value from a.

  • 5. Minimum spatial substrate moisture content

  • a. mean substrate moisture content values from all corners of a single plot for each sampling date (n = 5 dates)

  • b. minimum plot-level substrate moisture content value from a.

  • 6. Maximum spatial range

  • a. range between the highest corner substrate moisture content value and the lowest corner substrate moisture content value (wettest corner-driest corner), (n = 5 dates)

  • b. greatest range from a.

  • 7. Spatial CV

  • a. CV using the substrate moisture content corner data (standard deviation of four corners/average of four corners), (n = 5 dates)

  • b. mean of the five CVs from a.

Appendix 2

See Table 9.

Table 9 Inventory of vascular plants (105 species), macrolichens (41 species) and mosses (27 species) found at the plot level across six coastal barren sites (Peggy’s Cove, Chebucto Head, Taylor Head, Canso, Little Anse, and Baleine)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberndorfer, E.C., Lundholm, J.T. Species richness, abundance, rarity and environmental gradients in coastal barren vegetation. Biodivers Conserv 18, 1523–1553 (2009). https://doi.org/10.1007/s10531-008-9539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9539-5

Keywords

Navigation