Skip to main content
Log in

A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To simplify CRISPR/Cas9 genome editing in the industrial filamentous fungus Trichoderma reesei based on in vivo guide RNA (gRNA) transcription.

Results

Two putative RNA polymerase III U6 snRNA genes were identified in the genome of T. reesei QM6a by BLASTN using Myceliophthora. thermophila U6 snRNA gene as the template. The regions approximately 500 bp upstream of two U6 genes were efficient promoters for the in vivo expression of gRNA. The CRISPR system consisting of Cas9 and in vivo synthesized gRNA under control of the T. reesei U6 snRNA promoters was sufficient to cause a frameshift mutation in the ura5 gene via non-homologous end-joining-mediated events.

Conclusions

We report a simple gene editing method using a CRISPR/Cas9-coupled in vivo gRNA transcription system in T. reesei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112(12):2543–2549

    Article  CAS  Google Scholar 

  • Bai X, Larsen M, Meinhardt F (1999) The URA5 gene encoding orotate-phosphoribosyl transferase of the yeast Kluyveromyces lactis: cloning, sequencing and use as a selectable marker. Yeast 15(13):1393–1398

    Article  CAS  Google Scholar 

  • Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343

    Article  CAS  Google Scholar 

  • Boonanuntanasarn S, Panyim S, Yoshizaki G (2009) Usage of putative zebrafish U6 promoters to express shRNA in Nile tilapia and shrimp cell extracts. Transgenic Res 18(3):323–325

    Article  CAS  Google Scholar 

  • Chutrakul C, Panchanawaporn S, Jeennor S, Anantayanon J, Vorapreeda T, Vichai V, Laoteng K (2019) Functional characterization of novel U6 RNA polymerase III promoters: their implication for CRISPR-Cas9-mediated gene editing in Aspergillus oryzae. Curr Microbiol 7(12):1443–1451

    Article  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105(3):259–264

    Article  CAS  Google Scholar 

  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  • Druzhinina IS, Ekaterina S, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 377(1):1–9

    Article  Google Scholar 

  • Fuller KK, Chen S, Loros JJ, Dunlap JC (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080

    Article  CAS  Google Scholar 

  • Hao Z, Su X (2019) Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex. BMC Biotechnol 19(1):2

    Article  Google Scholar 

  • Hou Y, Pan Y, Yan M, He H, Yang Q, Zhong Y (2017) Influence of randomly inserted feruloyl esterase A on β-glucosidase activity in Trichoderma reesei. Appl Biochem Biotechnol 183:254–264

    Article  CAS  Google Scholar 

  • Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38(4):637–642

    Article  CAS  Google Scholar 

  • Li HH, Liu G (2017) The application of CRISPR/Cas9 in genome editing of filamentous fungi. Yi Chuan 39(5):355–367

    PubMed  Google Scholar 

  • Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10:1

    Article  Google Scholar 

  • Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  Google Scholar 

  • Matsu-Ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4

    Article  Google Scholar 

  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 10:1021

    Google Scholar 

  • Qin H, Xiao H, Zou G, Zhou Z, Zhong J (2017) CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem 56:57–61

    Article  CAS  Google Scholar 

  • Qin LN, Cai FR, Dong XR, Huang ZB, Tao Y, Huang JZ, Dong ZY (2012) Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresour Technol 109:116–122

    Article  CAS  Google Scholar 

  • Rantasalo A, Vitikainen M, Paasikallio T, Jäntti J, Landowski CP, Mojzita D (2019) Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 9:5032

    Article  Google Scholar 

  • Shi TQ, Liu GN, Ji RY, Shi K, Song P, Ren LJ, Huang H, Ji XJ (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443

    Article  CAS  Google Scholar 

  • Schuster M, Schweizer G, Reissmann S, Reissmannet S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genet Biol 89:3–9

    Article  CAS  Google Scholar 

  • Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microb 77(1):114–121

    Article  CAS  Google Scholar 

  • Wang W, ChenY WD (2017) Copper-mediated on-off control of gene expression in filamentous fungus Trichoderma reesei. J Microbiol Method 143:63–65

    Article  CAS  Google Scholar 

  • Wu C, Chen Y, Huang X, Sun S, Luo J, Lu Z, Wang W, Ma Y (2019) An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J Gen Appl Microbiol 65:301–307

    Article  Google Scholar 

  • Zhang C, Meng X, Wei X, Lu L (2016a) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57

    Article  CAS  Google Scholar 

  • Zhang L, Zhao X, Zhang G, Zhang J, Wang X, Zhang S, Wang W, Wei D (2016b) Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Sci Rep 6:20761

    Article  Google Scholar 

  • Zhang J, Wu C, Wang W, Wang W, Wei D (2018) A versatile Trichoderma reesei expression system for the production of heterologous proteins. Biotechnol Lett 40(6):965–972

    Article  CAS  Google Scholar 

  • Zheng X, Zheng P, Sun J, Kun Z, Ma Y (2018) Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger. Fungal Biol Biotechnol 5:2

    Article  Google Scholar 

Download references

Acknowledgements

The project funded by China Postdoctoral Science Foundation funded project (No. 2019M661402), the Open Funding Project of the State Key Laboratory of Bioreactor Engineering, and the Fundamental Research Funds for the Central Universities (No. 222201714053). We thank Professor Zihua Zhou for donating the T. reesei 6a-pc strain.

Supporting information

Supplementary Table 1—Primers and oligonucleotides used in this study.

Supplementary Table 2—The mutation efficiency in this study.

Sequence data—  > gRNA-ura5. > PU6-1. > PU6-2.

Supplementary Fig. 1—The procedure of T. reesei transformation.

Supplementary Fig. 2—Transcription of the gRNA in Dura1 and Dura2. The relative transcriptional levels of TrU6-1, TrU6-2, and gRNA in T. reesei mutants in glucose were analyzed by RT-qPCR. The expression of each tested gene was normalized to that of the internal control. The housekeeping gene sar1 was used as the internal control for normalization. The gene expression ratio in Dura1 was set to 1. Three independent experiments with three biological replicates each were performed. Values are the means ± SD of the results of three independent experiments.

Author information

Authors and Affiliations

Authors

Contributions

WW initiated, designed and coordinated the study and reviewed the manuscript. CW designed and carried out experiments and measurements. YC interpreted experimental data. YQ, JC, XN, HY, NZ cultured and counted fungi strains. YM supported the research funding. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Wang or Yushu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Chen, Y., Qiu, Y. et al. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription. Biotechnol Lett 42, 1203–1210 (2020). https://doi.org/10.1007/s10529-020-02887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02887-0

Keywords

Navigation