Skip to main content

Advertisement

Log in

Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Catharanthus roseus synthesizes one of the most structurally, chemically and biologically active phytomolecules monoterpenoids indole alkaloids (MIAs) with having a wide range of pharmaceutical activities. Being the sole source of antineoplastic MIAs vinblastine and vincristine C. roseus has become one of the most valued plant. The low in planta availability of these MIAs and unavailability of alternative chemical synthesis system has enhanced their demand and equally let to the exorbitant market cost. To bridge this gap alternative production systems have been investigated using MIAs metabolic engineering (ME) in the homologous and heterologous systems. The availability of improved recombinant technologies along with genomics and metabolomics tools has opened the door of tremendous new potentials of ME. To encash these potentials of ME for MIAs pathway, efforts were made by expressing constitutive structure biosynthesis enzymes, transporters, and transcription factors of C. roseus MIAs biosynthesis in both homologous and heterologous systems. Here we review the knowledge of C. roseus MIAs pathway metabolic engineering in homologous and heterologous systems, gained in the past 35 years of C. roseus research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ajitkumar PK et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74

    Google Scholar 

  • Amirkia V, Heinrich M (2014) Alkaloids as drug leads – A predictive structural and biodiversity-based analysis. Phytochem Lett 10:48–53

    Google Scholar 

  • Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V (2013) A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 25:4123–4134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E et al (2002) Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotech 97:135–145

    CAS  Google Scholar 

  • Bailey JE (1991) Toward a Science of Metabolic Engineering. Science 252:1668–1675

    CAS  PubMed  Google Scholar 

  • Banyai W, Kirdmanee C, Mii M, Supaibulwatana K (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tiss Org Cult 103:255–265

    CAS  Google Scholar 

  • Brown S, Clastre M, Courdavault V, O’Connor S (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci USA 112:3205–3210

    CAS  PubMed  Google Scholar 

  • Buckingham J (2010) Dictionary of alkaloids, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Canel C, Lopes-Cardoso M, Whitmer S et al (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    CAS  PubMed  Google Scholar 

  • Carqueijeiro I, Bernonville TD, Lanoue A, Dang TT et al (2018) A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. Plant J 94:469–484

    CAS  PubMed  Google Scholar 

  • Chang K, Qiu F, Chen M, Zeng L, Liu X, Yang C et al (2014) Engineering the MEP pathway enhanced ajmalicine biosynthesis. Biotechnol Appl Biochem 6:249–255

    Google Scholar 

  • Charlwood BV, Pletsch M (2002) Manipulation of Natural Product Accumulation in Plants Through Genetic Engineering. Journal of Herbs, Spi Med Plants 9:139–151

    CAS  Google Scholar 

  • Chung IM, Hong SB, Peebles CAM et al (2007) Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots. Biotech Prog 23:327–332

    CAS  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM et al (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    CAS  PubMed  Google Scholar 

  • Cordell GA (1981) Introduction to alkaloids, 1st edn. Wiley, New York

    Google Scholar 

  • Courdavault V, Papon N, Clastre M, Giglioli-Guivarch N, St-Pierre B, Burlat V, (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol 19:43–50

    CAS  PubMed  Google Scholar 

  • Dai Z et al (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    CAS  PubMed  Google Scholar 

  • Di Fiore S, Fisher N, Schillberg S (2004) Transient gene expression of recombinant terpenoid indole alkaloid enzymes in Catharanthus roseus leaves. Plant Mol Biol Rep 22:15–22

    Google Scholar 

  • Fossati E et al (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283

    PubMed  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    CAS  PubMed  Google Scholar 

  • Giddings LA, Liscombe DK, Hamilton JP, Childs KL et al (2011) A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J. Biol. Chem. 286:16751–16757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SB, Peebles CA, Shanks JV et al (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122:28–38

    CAS  PubMed  Google Scholar 

  • Horwitz SB (1994) How to make Taxol from scratch. Nature 367:593–594

    CAS  PubMed  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI et al (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276

    CAS  PubMed  Google Scholar 

  • Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90:1005–1016

    CAS  PubMed  Google Scholar 

  • Julsing KM, Quax JW, Oliver K (2007) The engineering of medicinal plants: prospects and limitations of medicinal plant biotechnology. In: Kayser O, Quax WJ (eds) Medicinal Plant Biotechnology. Wiley, Weinheim, pp 3–8

    Google Scholar 

  • Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K, Buell CR, Oonnor SE (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82:680–692

    CAS  PubMed  Google Scholar 

  • Kingston DGI (1994) Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol. 12:222–227

    CAS  PubMed  Google Scholar 

  • Laflamme P, St-Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19- hydroxy-O-acetyltransferase. Plant Physiol. 125:189–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li CY, Leopold AL, Sander GW et al (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13:155

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L (2019) GATA and phytochorome interacting factor transcription factors regulates light induced vindoline biosynthesis in Catharanthus roseus. Plant Phy 180:1336–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DH, Ren WW, Cui LJ et al (2011) Enhanced accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots by overexpression of transcriptional factor ORCA2. Afr J Biotechnol 10:3260–3268

    CAS  Google Scholar 

  • Magnotta M, Murata J, Chen J et al (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    CAS  PubMed  Google Scholar 

  • Mathur AK, Mathur A, Seth R, Verma P, Vyas D (2006) Biotechnological interventions in designing speciality medicinal herbs for twenty first century: Some emerging trends in pathway modulation through metabolic engineering. In: Sharma RK, Arora R (eds) Herbal drugs: a twenty first century perspective. Jaypee Brothers Medical Publishers, New Delhi, pp 83–94

    Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:1–12

    Google Scholar 

  • Minami H et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105(21):7393–7398

    CAS  PubMed  Google Scholar 

  • Moerkercke AV, Steensma P, Gariboldis I, Espozs J, Purnamas P, Schweizer F, Miettinen K, Bossche RV, De Clercq R, Memelink J, Goossens A (2016) The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloids production in the medicinal plant Catharanthus roseus. The Plant J 88:3–12

    PubMed  Google Scholar 

  • Mortensen S, Bernal-Franco D, Cole LF, Sathitloetsakun S, Cram EJ, Lee-Parsons CWT (2019) EASI: Transformation: an efficient transient expression method for analysing gene function in Catharanthus roseus seedlings. Front Plant Sci 20:755

    Google Scholar 

  • Moses T et al (2014) Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum. Proc Natl Acad Sci USA 111(4):1634–1639

    CAS  PubMed  Google Scholar 

  • Nakagawa A et al (2014) (R, S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci Rep 4:6695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel RL (1990) The discovery of the vinca alkaloids chemotherapeutic agents against cancer. Biochem Cell Biol. 68:1344–1351

    Google Scholar 

  • Pan Q, Rianika N, Mustafa Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250

    CAS  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S et al (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7:1–14

    Google Scholar 

  • Peebles CAM, EH, Shanks JV et al (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    CAS  PubMed  Google Scholar 

  • Peebles CAM, Sander GW, Hughes EH et al (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    CAS  PubMed  Google Scholar 

  • Qu Y, Easson MLAE, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA 112:6224–6229

    CAS  PubMed  Google Scholar 

  • Ro D-K et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    CAS  PubMed  Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nature Chem Biol 3:387–395

    CAS  PubMed  Google Scholar 

  • Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE (2018) Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell Tissue Org Cult. 134:41–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V (2014) 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 101:23–31

    CAS  PubMed  Google Scholar 

  • Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13(4):392–400

    CAS  PubMed  Google Scholar 

  • Sarma RK, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front. Plant Sci. 9:942

    Google Scholar 

  • Schwender J (2008) Metabolic flux analysis as a tool in metabolic engineering of plants. Curr Opin Biotech 19:131–137

    CAS  PubMed  Google Scholar 

  • Sharma A, Verma N, Verma P, Verma RK, Mathur A, Mathur AK (2017a) Optimization of a Bacopa monnieri-based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal crops. Vitro Cell Dev Biol 53:22–32

    CAS  Google Scholar 

  • Sharma A, Verma P, Mathur A, Mathur AK (2017b) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 255:425–435

    PubMed  Google Scholar 

  • Sharma A, Verma P, Mathur A, Mathur AK (2018) Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloids pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma 255:1281–1294

    CAS  PubMed  Google Scholar 

  • Sharma A, Mathur AK, Ganapathy J, Joshi B, Patel P (2019) Effect of abiotic elicitation and pathway precursors feegins over terpenoid indole alkaloids production in multiple shoot and callus cultures of C roseus. Biologia 74:543–553

    CAS  Google Scholar 

  • Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Vanden Bossche R, de Clercq R, Goossens A (2018) An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metab Eng 48:150–162

    CAS  PubMed  Google Scholar 

  • Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, Oonnor SE (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22:336–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Peebles CAM (2015) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma. 5:2. https://doi.org/10.1007/s00709-015-0881-7

    Article  CAS  Google Scholar 

  • Sun J, Zhao S, Shanks JV, Peebles CAM (2018) Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol Bioeng 115:673–683

    CAS  PubMed  Google Scholar 

  • Suttipantaa N, Pattanaika S, Kulshrestha M et al (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloids biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Google Scholar 

  • Taha HS, Abo-Aba SEM, El-Hamshary OIM et al (2008) In vitro studies on Egyptian Catharanthus roseus (L.) G. Don: III. Effects of extra tryptophan decarboxylase and strictosidine synthase genes copies in indole alkaloid production. Res J Cell Mol Biol 2:18–23

    CAS  Google Scholar 

  • Tang KX, Liu DH, Wang YL, Cui LJ, Ren WW, Sun XF (2011) Overexpression of transcriptional factor ORCA3 increases the accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots. Russ J Plant Physiol 58:415–422

    CAS  Google Scholar 

  • Thamm AMK, Qu Y, De Luca V (2016) Discovery and metabolic engineering of iridoid/secoiridoid and monoterpenoid indole alkaloid biosynthesis. Phytochem Rev 15:339–361

    CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Google Scholar 

  • Verma P, Mathur AK (2011) Agrobacterium tumefaciens mediated transgenic plant production via direct shoot bud organogenesis from pre-plasmolyzed leaf explants of Catharanthus roseus. Biotechnol Lett 33:1053–1060

    CAS  PubMed  Google Scholar 

  • Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2014) Morphogenetic and chemical stability of long term maintained Agrobacgterium-mediated transgenic Catharnanthus roseus plants. Nat Prod Res 29:315–320

    PubMed  Google Scholar 

  • Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381

    CAS  PubMed  Google Scholar 

  • Verma P, Mathur AK, Khan SA, Verma N, Sharma A (2017) Transgenic studies for modulating terpenoid indole alkaloids paghway in Catharnanthus roseus present status and future options. Phytochem Rev 16:19–54

    CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. In: Verpoorte R, Alfermann AW (eds). Kluwer Academic Publishers, Dordrecht.

  • Wang CT, Liu H, Gao XS et al (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    CAS  PubMed  Google Scholar 

  • Wang Q, Xing S, Pan Q et al (2012) Development of efficient Catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34

    PubMed  PubMed Central  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002a) Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. Plant Cell Tissue Organ Cult 69:85–93

    CAS  Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002b) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    CAS  PubMed  Google Scholar 

  • Whitmer S, Canel C, van der Heijden R, Verpoorte R (2004) Long term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss Org Cult 74:73–80

    Google Scholar 

  • Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotech 26:174–182

    CAS  PubMed  Google Scholar 

  • Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci USA 110:15830–15835

    CAS  PubMed  Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Wu YM, Tang YX (2010) Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. App Microbiol Biotechnol 88:737–750

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

AS is highly grateful to the Science and Engineering Research Board, Department of Science and Technology, Government of India (Grant No. SRG/2019/000130) and UTU Research Promotion Scheme (Grant No. UTU/RPS/1431–5/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Amin, D., Sankaranarayanan, A. et al. Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems. Biotechnol Lett 42, 11–23 (2020). https://doi.org/10.1007/s10529-019-02757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02757-4

Keywords

Navigation