Skip to main content
Log in

Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Reproduced with permission from Tufvesson et al. (2011). Copyright by the American Chemical Society

Fig. 3

Reproduced from Onderková et al. (2001)

Similar content being viewed by others

References

  • Akay G, Erhan E, Keskinler B (2005) Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria. Biotechnol Bioeng 90:180–190

    Article  CAS  PubMed  Google Scholar 

  • Andrade GSS, Freitas L, Oliveira PC, De Castro HF (2012) Screening, immobilization and utilization of whole cell biocatalysts to mediate the ethanolysis of babassu oil. J Mol Catal B Enzym 84:183–188

    Article  CAS  Google Scholar 

  • Andrade LH, Kroutil W, Jamison TF (2014) Continuous flow synthesis of chiral amines in organic solvents: immobilization of E. coli cells containing both omega-transaminase and PLP. Org Lett 16:6092–6095

    Article  CAS  PubMed  Google Scholar 

  • Anilkumar AV, Lacik I, Wang TG (2001) A novel reactor for making uniform capsules. Biotechnol Bioeng 75:581–589

    Article  CAS  PubMed  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    Article  CAS  PubMed  Google Scholar 

  • Bayat Z, Hassanshahian M, Cappello S (2015) Immibilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J 9:48–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350

    Article  CAS  PubMed  Google Scholar 

  • Bertóková A, Vikartovská A, Bučko M, Gemeiner P, Tkáč J, Chorvát D et al (2015) Biooxidation of 2-phenylethanol to phenylacetic acid by whole-cell Gluconobacter oxydans biocatalyst immobilized in polyelectrolyte complex capsules. Biocatal Biotransform 33:111–120

    Article  CAS  Google Scholar 

  • Bianchi DA, Moran-Ramallal R, Iqbal N, Rudroff F, Mihovilovic MD (2013) Enantiocomplementary access to carba-analogs of C-nucleoside derivatives by recombinant Baeyer-Villiger monooxygenases. Bioorg Med Chem Lett 23:2718–2720

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 484:185–194

    Article  CAS  Google Scholar 

  • Brányik T, Vicente AA, Dostálek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21:653–663

    Article  PubMed  CAS  Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2012a) Characterization of immobilized biocatalysts. In: Buchholz K, Kasche V, Bornscheuer UT (eds) Biocatalysts and Enzyme Technology, 2nd edn. Wiley-Blackwell, Weinheim, pp 411–448

    Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2012b) Immobilization of microorganisms and cells. In: Buchholz K, Kasche V, Bornscheuer UT (eds) Biocatalysts and Enzyme Technology, 2nd edn. Wiley-Blackwell, Weinheim, pp 359–410

    Google Scholar 

  • Büchi Labortechnik AG. http://www.buchi.com/en/content/spray-drying-encapsulation-solutions. Accesed 24 Nov 2016

  • Bučko M, Schenkmayerová A, Gemeiner P, Vikartovská A, Mihovilovič MD, Lacík I (2011) Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzyme Microb Technol 49:284–288

    Article  PubMed  CAS  Google Scholar 

  • Bučko M, Mislovičová D, Nahálka J, Vikartovská A, Šefčovičová J, Katrlík J et al (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Pap 66:983–998

    Article  CAS  Google Scholar 

  • Bučko M, Gemeiner P, Schenkmayerová A, Krajčovič T, Rudroff F, Mihovilovič MD (2016) Baeyer-Villiger oxidations: biotechnological approach. Appl Microbiol Biotechnol 100:6585–6599

    Article  PubMed  CAS  Google Scholar 

  • Buque EM, Chin-Joe I, Straathof AJJ, Jongejan JA, Heijnen JJ (2002) Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker’s yeast. Enzyme Microb Technol 31:656–664

    Article  CAS  Google Scholar 

  • Carballeira Rodriguez JD, Garcia-Burgos C, Quezada Alvarez MA, Alvarez Ruiz E, Sinisterra Gago JV (2004) Williopsis californica, Williopsis saturnus, and Pachysolen tannophilus: novel microorganisms for stereoselective oxidation of secondary alcohols. Biotechnol Bioeng 87:632–640

    Article  CAS  PubMed  Google Scholar 

  • Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714

    Article  CAS  PubMed  Google Scholar 

  • Cardenas-Fernandez M, Neto W, Lopez C, Alvaro G, Tufvesson P, Woodley JM (2012) Immobilization of Escherichia coli containing omega-transaminase activity in LentiKats. Biotechnol Prog 28:693–698

    Article  CAS  PubMed  Google Scholar 

  • Casablancas A, Cárdenas-Fernández M, Álvaro G, Benaiges MD, Caminal G, de Mas C, Gonzáles G, López C, López-Santín J (2013) New ammonia lyases and amine transaminases: standardization of production process and preparation of immobilized biocatalysts. Electron J Biotechnol 16:4

    CAS  Google Scholar 

  • Casali S, Gungormusler M, Bertin L, Fava F, Azbar N (2012) Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol. Biochem Eng J 64:84–90

    Article  CAS  Google Scholar 

  • Chen JP, Lin YS (2007) Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate-silicate sol-gel beads. Proc Biochem 42:934–942

    Article  CAS  Google Scholar 

  • Chen X, Du W, Liu D, Ding F (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biot 83:71–76

    Article  CAS  Google Scholar 

  • Cobb RE, Sun N, Zhao H (2013) Directed evolution as a powerful synthetic biology tool. Methods 60:81–90

    Article  CAS  PubMed  Google Scholar 

  • Dagher SF, Ragout AL, Siñeriz F, Bruno-Bárcena JM (2010) Cell immobilization for production of lactic acid biofilms do it naturally. Adv Appl Microbiol 71:113–148

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho CCCR (2016) Whole cell biocatalysts: essential workers from Nature to the industry. Microb Biotechnol. doi:101111/1751-7915.12363

  • de Vos P, Bučko M, Gemeiner P, Navrátil M, Švitel J, Faas M et al (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570

    Article  PubMed  CAS  Google Scholar 

  • Demirci A, Pongtharangkul T, Pometto AL (2007) Applications of biofilm reactors for production of value-added products by microbial fermentation. In: Blaschek HP, Wang HH, Agle ME (eds) Biofilms in the food environment. Blackwell, Oxford, pp 167–190

    Google Scholar 

  • Detzel C, Maas R, Tubeleviciute A, Jose J (2013) Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds. Appl Microbiol Biotechnol 97:4887–4896

    Article  CAS  PubMed  Google Scholar 

  • Dicosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    Article  CAS  PubMed  Google Scholar 

  • Djokic L, Spasic J, Jeremic S, Vasiljevic B, Prodanovic O, Prodanovic R, Nikodinovic-Runic J (2015) Immobilization of Escherichia coli cells expressing 4-oxalocrotonate tautomerase for improved biotransformation of beta-nitrostyrene. Bioproc Biosyst Eng 38:2389–2395

    Article  CAS  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keaslink JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–761

    Article  CAS  PubMed  Google Scholar 

  • Fidaleo M, Charaniya S, Solheid C, Diel U, Laudon M, Ge H et al (2006) A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of d-sorbitol to l-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans. Biotechnol Bioeng 95:446–458

    Article  CAS  PubMed  Google Scholar 

  • Freeman A, Lilly MD (1998) Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Enzyme Microb Technol 23:335–345

    Article  CAS  Google Scholar 

  • Gao H, Kim I-W, Choi J-H, Khera E, Wen F, Lee J-K (2015) Repeated production of l-xylulose by an immobilized whole-cell biocatalyst harboring l-arabinitol dehydrogenase coupled with an NAD+ regeneration system. Biochem Eng J 96:23–28

    Article  CAS  Google Scholar 

  • Garikipati SV, McIver AM, Peeples TL (2009) Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Appl Environ Microbiol 75:6545–6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • geniaLab BioTechnologie, Produkte und Dienstleistungen GmbH. http://www.genialab.de/JetCutter.php. Accessed 24 Nov 2016

  • Genisheva Z, Teixeira JA, Oliveira JM (2014) Immobilized cell systems for batch and continuous winemaking. Trend Food Sci Technol 40:33–47

    Article  CAS  Google Scholar 

  • Gibbs PR, Uehara CS, Neunert U, Bommarius AS (2005) Accelerated biocatalyst stability testing for process optimization. Biotechnol Prog 21:762–774

    Article  CAS  PubMed  Google Scholar 

  • Gross R, Buehler K, Schmid A (2013) Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 110:424–436

    Article  CAS  PubMed  Google Scholar 

  • Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energy Rev 41:1447–1464

    Article  CAS  Google Scholar 

  • Gullicks H, Hasan H, Das D, Moretti C, Hung Y-T (2011) Biofilm fixed film systems. Water 3:843

    Article  CAS  Google Scholar 

  • Gungormusler M, Gonen C, Azbar N (2011) Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess Biosyst Eng 34:727–733

    Article  CAS  PubMed  Google Scholar 

  • Halan B, Letzel T, Schmid A, Buehler K (2014) Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J 9:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A et al (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278

    Article  CAS  Google Scholar 

  • Hansson M, Samuelson P, Gunneriusson E, Stahl S (2001) Surface display on gram positive bacteria. Comb Chem High Throughput Screen 4:171–184

    Article  CAS  PubMed  Google Scholar 

  • Härle J, Panke S (2014) Synthetic biology for oligosaccharide production. Curr Org Chem 18:987–1004

    Article  CAS  Google Scholar 

  • Hibi M, Kasahara T, Kawashima T, Yajima H, Kozono S, Smirnov SV et al (2015) Multi-enzymatic synthesis of optically pure β-hydroxy α-amino acids. Adv Synth Catal 357:767–774

    Article  CAS  Google Scholar 

  • Hossain GS, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J (2014) Bioconversion of l-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol 169:112–120

    Article  CAS  PubMed  Google Scholar 

  • Hucík M, Bučko M, Gemeiner P, Štefuca V, Vikartovská A, Mihovilovič MD et al (2010) Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer-Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnol Lett 32:675–680

    Article  PubMed  CAS  Google Scholar 

  • Ingram CU, Bommer M, Smith ME, Dalby PA, Ward JM, Hailes HC, Lye GJ (2007) One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: pyruvate transaminase pathway in Escherichia coli. Biotechnol Bioeng 96:559–569

    Article  CAS  PubMed  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop KD (1998) Immobilization of biocatalysts in lentiKats. Chem Eng Technol 21:275–278

    Article  CAS  Google Scholar 

  • Ji X, Wang P, Su Z, Ma G, Zhang S (2014) Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells. J Mater Chem B 2:181–190

    Article  CAS  Google Scholar 

  • Kampmann M, Hoffrichter A-C, Stalinski D, Wichmann R (2015) Kinetic characterization of tyrosinase containing mushroom (Agaricus bisporus) cells immobilized in silica alginate. J Mol Catal B 116:124–133

    Article  CAS  Google Scholar 

  • Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A (2016) Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 113:52–61

    Article  CAS  PubMed  Google Scholar 

  • Kasche V (1979) Mass transfer influence on effectiveness [of immobilized biocatalysts]. Intraparticle diffusion limitation. DECHEMA Monogr 84:224–243

    CAS  Google Scholar 

  • Kaul P, Banerjee A, Banerjee UC (2006) Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7:1536–1541

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Seo JH, Kang DG, Cha HJ (2014a) Engineered whole-cell biocatalyst-based detoxification and detection of neurotoxic organophosphate compounds. Biotechnol Adv 32:652–662

    Article  CAS  PubMed  Google Scholar 

  • Kim KR, Seo ES, Oh DK (2014b) l-Ribose production from l-arabinose by immobilized recombinant Escherichia coli co-expressing the l-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans. Appl Biochem Biotechnol 172:275–288

    Article  CAS  PubMed  Google Scholar 

  • Kisukuri CM, Andrade LH (2015) Production of chiral compounds using immobilized cells as a source of biocatalysts. Org Biomol Chem 13:10086–10107

    Article  CAS  PubMed  Google Scholar 

  • Kohler V, Turner NJ (2015) Artificial concurrent catalytic processes involving enzymes. Chem Commun (Camb) 51:450–464

    Article  CAS  Google Scholar 

  • Kragl U, Dwars T (2001) The development of new methods for the recycling of chiral catalysts. Trends Biotechnol 19:442–449

    Article  CAS  PubMed  Google Scholar 

  • Kranen E, Detzel C, Weber T, Jose J (2014) Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs. Microb Cell Fact 13:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kratzer R, Pukl M, Egger S, Vogl M, Brecker L, Nidetzky B (2011) Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone. Biotechnol Bioeng 108:797–803

    Article  CAS  PubMed  Google Scholar 

  • Kuhn D, Blank LM, Schmid A, Bühler B (2010) Systems biotechnology—rational whole-cell biocatalyst and bioprocess design. Eng Life Sci 10:384–397

    Article  CAS  Google Scholar 

  • Lacík I (2006) Polymer chemistry in diabetes treatment by encapsulated islets of langerhans: review to 2006. Aust J Chem 59:508–524

    Article  CAS  Google Scholar 

  • Ladkau N, Schmid A, Buhler B (2014) The microbial cell-functional unit for energy dependent multistep biocatalysis. Curr Opin Biotechnol 30:178–189

    Article  CAS  PubMed  Google Scholar 

  • Lang K, Buehler K, Schmid A (2015) Multistep synthesis of (S)-3-hydroxyisobutyric acid from glucose using Pseudomonas taiwanensis VLB120 B83 T7 catalytic biofilms. Adv Synth Catal 357:1919–1927

    Article  CAS  Google Scholar 

  • Lazarova V, Manem J (2000) Innovative biofilm treatment technologies for water and wastewater treatment. In: Bryers JD (ed) Biofilms II: process analysis and applications. Wiley, New York, pp 159–206

    Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  CAS  PubMed  Google Scholar 

  • LentiKat AS, http://www.lentikats.eu/en/. Accessed 24 Nov 2016

  • Li X, Jin X, Lu X, Chu F, Shen J, Ma Y et al (2014) Construction and characterization of a thermostable whole-cell chitinolytic enzyme using yeast surface display. World J Microbiol Biotechnol 30:2577–2585

    Article  PubMed  CAS  Google Scholar 

  • Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Villela Filho M (1999) Production of fine chemicals using biocatalysis. Curr Opin Biotechnol 10:595–603

    Article  CAS  PubMed  Google Scholar 

  • Liese A, Seelbach K, Buchholz A, Haberland J (2006) Processes. In: Liese A, Seelbach K, Wandrey Ch (eds) Industrial Biotransformations, 2nd edn. Wiley-VCH, Weinheim, pp 147–513

    Chapter  Google Scholar 

  • Lima-Ramos J, Neto W, Woodley JM (2014) Engineering of biocatalysts and biocatalytic processes. Top Catal 57:301–320

    Article  CAS  Google Scholar 

  • Liu ZQ, Zhou M, Zhang XH, Xu JM, Xue YP, Zheng YG (2012) Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol 22:35–47

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Liu Y, Zhu X, Zhao W, Huang L, Cai J et al (2011) Cloning and characterization of purine nucleoside phosphorylase in Escherichia coli and subsequent ribavirin biosynthesis using immobilized recombinant cells. Enzyme Microb Technol 48:438–444

    Article  CAS  PubMed  Google Scholar 

  • Mansee AH, Chen W, Mulchandani A (2000) Biodetoxification of Coumaphos insecticide using immobilized Escherichia coli expressing organophosphorus hydrolase enzyme on cell surface. Biotechnol Bioprocess Eng 5:436–440

    Article  CAS  Google Scholar 

  • Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microb 68:4517–4522

    Article  CAS  Google Scholar 

  • Mersinger LJ, Hann EC, Cooling FB, Gavagan JE, Ben-Bassat A, Wu S et al (2005) Production of acrylamide using alginate-immobillized E. coli expressing Comamonas testosteroni 5-MGAM-4D nitrile hydratase. Adv Synth Catal 347:1125–1131

    Article  CAS  Google Scholar 

  • Milner SE, Maguire AR (2012) Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Arkivoc 2012:321–382

    Article  Google Scholar 

  • Moo-Young M (1988) Bioreactor immobilized enzymes and cells. Springer, Netherlands, London

    Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223

    Article  CAS  PubMed  Google Scholar 

  • Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F (2015) Cascade catalysis—strategies and challenges en route to preparative synthetic biology. Chem Commun (Camb) 51:5798–5811

    Article  CAS  Google Scholar 

  • Nakajima N, Tanizawa K, Tanaka H, Soda K (1988) Enantioselective synthesis of various d-amino acids by a multi-enzyme system. J Biotechnol 8:243–248

    Article  CAS  Google Scholar 

  • Ng JF, Jaenicke S (2009) Immobilized whole cells as effective catalysts for chiral alcohol production. Aust J Chem 62:1034–1039

    Article  CAS  Google Scholar 

  • Nisco Engineering AG. http://www.nisco.ch/. Accesed 24 Nov 2016

  • Oberleitner N, Peters C, Muschiol J, Kadow M, Saß S, Bayer T et al (2013) An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis. Chem Cat Chem 5:3524–3528

    CAS  Google Scholar 

  • Oberleitner N, Peters C, Rudroff F, Bornscheuer UT, Mihovilovic MD (2014) In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer-Villiger monooxygenase. J Biotechnol 192:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obradovic B, NedovicVA Bugarski B, Willaert R, Vunjak-Novakovic G (2004) Immobilised cell bioreactors. In: Hofman M, Anné J (eds) Fundamentals of Cell Immobilisation Biotechnology, vol 8A. Springer, Netherlands, pp 411–436

    Chapter  Google Scholar 

  • Onderková Z, Bryjak J, Vaňková K, Polakovič M (2010) Kinetics of thermal inactivation of free Aureobasidium pullulans fructosyltransferase. Enzyme Microb Technol 47:134–139

    Article  CAS  Google Scholar 

  • Oroz-Guinea I, Garcia-Junceda E (2013) Enzyme catalysed tandem reactions. Curr Opin Chem Biol 17:236–249

    Article  CAS  PubMed  Google Scholar 

  • Pan XX, Xu L, Zhang Y, Xiao X, Wang XF, Liu Y et al (2012) Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. J Agric Food Chem 60:9673–9679

    Article  CAS  PubMed  Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol 29:82–93

    Article  CAS  PubMed  Google Scholar 

  • Pennec A, Jacobs CL, Opperman DJ, Smit MS (2014) Revisiting cytochrome P450-mediated oxyfunctionalization of linear and cyclic alkanes. Adv Synth Catal 357:118–130

    Article  CAS  Google Scholar 

  • Perpina C, Vinaixa J, Andreu C, del Olmo M (2015) Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology. Appl Microbiol Biotechnol 99:775–789

    Article  CAS  PubMed  Google Scholar 

  • Polakovič M, Kudláčová G, Štefuca V, Báleš V (2001) Determination of sucrose effective diffusivity and intrinsic rate constant of hydrolysis catalysed by Ca-alginate entrapped cells. Chem Eng Sci 56:459–466

    Article  Google Scholar 

  • Prüsse U, Bilancetti L, Bučko M, Bugarski B, Bukowski J, Gemeiner P et al (2008) Comparison of different technologies for alginate beads production. Chem Pap 62:364–374

    Article  CAS  Google Scholar 

  • Quezada MA, Carballeira JD, Sinisterra JV (2009) Monascus kaoliang CBS 302.78 immobilized in polyurethane foam using iso-propanol as co-substrate: optimized immobilization conditions of a fungus as biocatalyst for the reduction of ketones. Biores Technol 100:2018–2025

    Article  CAS  Google Scholar 

  • Rao NN, Lütz S, Seelbach K, Liese A (2006) Basics of bioreaction engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley, Weinheim, pp 115–145

    Chapter  Google Scholar 

  • Rebroš M, Rosenberg M, Grosová Z, Krištofíková L, Paluch M, Sipocz M (2009) Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl Biochem Biotechnol 158:561–570

    Article  PubMed  CAS  Google Scholar 

  • Rebroš M, Lipták L, Rosenberg M, Bučko M, Gemeiner P (2014) Biocatalysis with Escherichia coli-overexpressing cyclopentanone monooxygenase immobilized in polyvinyl alcohol gel. Lett Appl Microbiol 58:556–563

    Article  PubMed  CAS  Google Scholar 

  • Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    Article  CAS  Google Scholar 

  • Rich JO, Michels PC, Khmelnitsky YL (2002) Combinatorial biocatalysis. Curr Opin Chem Biol 6:161–167

    Article  CAS  PubMed  Google Scholar 

  • Riddle KW, Mooney DJ (2004) Biomaterials for cell immobilisation. In: Nedovic V, Willaert R (eds) Fundamentals of Cell Immobilisation Biotechnology, vol 8A., SpringerNetherlands, Dordrecht, pp 15–32

    Chapter  Google Scholar 

  • Riley MR, Muzzio FJ, Reyes SC (1999) Experimental and modeling studies of diffusion in immobilized cell systems. A review of recent literature and patents. Appl Biochem Biotechnol 80:151–188

    Article  CAS  PubMed  Google Scholar 

  • Rogers TA, Bommarius AS (2010) Utilizing simple biochemical measurements to predict lifetime output of biocatalysts in continuous isothermal processes. Chem Eng Sci 65:2118–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero E, Castellanos Rubén Gómez, Mattevi A, Fraaije MW (2016) Characterization and crystal structure of a robust cyclohexanone monooxygenase. Angew Chem 128:1–5

    Article  Google Scholar 

  • Sakuragi H, Kuroda K, Ueda M (2011) Molecular breeding of advanced microorganisms for biofuel production. J Biomed Biotechnol 2011:416931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samin G, Pavlova M, Arif MI, Postema CP, Damborsky J, Janssen DB (2014) A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation. Appl Environ Microbiol 80:5467–5476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  CAS  PubMed  Google Scholar 

  • Santacoloma PA, Sin G, Gernaey KV, Woodley JM (2011) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Process Res Dev 15:203–212

    Article  CAS  Google Scholar 

  • Schenkmayerová A, Bučko M, Gemeiner P, Chorvát D Jr, Lacik I (2012) Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer-Villiger biooxidation by confocal laser scanning microscopy. Biotechnol Lett 34:309–314

    Article  PubMed  CAS  Google Scholar 

  • Schenkmayerová A, Bučko M, Gemeiner P, Trelová D, Lacík I, Chorvát D Jr et al (2014) Physical and bioengineering properties of polyvinyl alcohol lens-shaped particles versus spherical polyelectrolyte complex microcapsules as immobilisation matrices for a whole-cell Baeyer-Villiger monooxygenase. Appl Biochem Biotechnol 174:1834–1849

    Article  PubMed  CAS  Google Scholar 

  • Schreuder MP, Mooren AT, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120

    Article  CAS  PubMed  Google Scholar 

  • Schrewe M, Julsing MK, Buhler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 42:6346–6377

    Article  CAS  PubMed  Google Scholar 

  • Siu K-H, Chen R, Sun Q, Chen L, Tsai S-L, Chen W (2015) Synthetic scaffolds for pathway enhancement. Curr Opin Biotechnol 36:98–106

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Li J, Shin HD, Du G, Liu L, Chen J (2015) One-step biosynthesis of alpha-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris. Sci Rep 5:12614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spedalieri C, Sicard C, Perullini M, Brayner R, Coradin T, Livage J et al (2015) Silica@proton-alginate microreactors: a versatile platform for cell encapsulation. J Mater Chem B 3:3189–3194

    Article  CAS  Google Scholar 

  • Stojkovič G, Žnidaršič-Plazl P (2012) Continuous synthesis of l-malic acid using whole-cell microreactor. Proc Biochem 47:1102–1107

    Article  CAS  Google Scholar 

  • Stojkovič G, Krivec M, Vesel A, Marinšek M, Žnidaršič-Plazl P (2014) Surface cell immobilization within perfluoroalkoxy microchannels. Appl Surf Sci 320:810–817

    Article  CAS  Google Scholar 

  • Straathof AJJ (2006) Quantitative analysis of industrial biotransformation. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley, Weinheim, pp 515–520

    Chapter  Google Scholar 

  • Stryjewska A, Kiepura K, Librowski T, Lochynski S (2013) Biotechnology and genetic engineering in the new drug development. Part III. Biocatalysis, metabolic engineering and molecular modelling. Pharmacol Rep 65:1102–1111

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Liang B, Yi T, Manco G, Palchetti I, Liu A (2014) Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Enzyme Microb Technol 55:107–112

    Article  CAS  PubMed  Google Scholar 

  • Trögl J, Krhůtková O, Pilařová V, Dáňová P, Holíček R, Kohlová M et al (2012) Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats biocatalyst. Int J Environ Sci Technol 9:425–432

    Article  CAS  Google Scholar 

  • Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274

    Article  CAS  Google Scholar 

  • Turner NJ, O’Reilly E (2013) Biocatalytic retrosynthesis. Nat Chem Biol 9:285–288

    Article  CAS  PubMed  Google Scholar 

  • Uthoff S, Broker D, Steinbuchel A (2009) Current state and perspectives of producing biodiesel-like compounds by biotechnology. Microb Biotechnol 2:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525

    Article  CAS  PubMed  Google Scholar 

  • Webb C, Dervakos GA (1996) Studies in viable cell immobilization. R.G. Landes, Austin

    Google Scholar 

  • Webb C, Black GM, Atkinson B (1986) Process engineering aspects of immobilised cell systems, 1st, ed edn. Institution of Chemical Engineers, Rugby, Warwickshire

    Google Scholar 

  • Willaert RG, Baron GV (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12:160–205

    Article  Google Scholar 

  • Willaert RG, Baron GV, De Backer L (1996) Immobilised living cell systems: modelling and experimental methods. Wiley, Chichester

    Google Scholar 

  • Wohlgemuth R (2011) Molecular and engineering perspectives of the biocatalysis interface to chemical synthesis. Chem Biochem Eng Q 25:125–134

    CAS  Google Scholar 

  • Wohlgemuth R, Plazl I, Znidarsic-Plazl P, Gernaey KV, Woodley JM (2015) Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends Biotechnol 33:302–314

    Article  CAS  PubMed  Google Scholar 

  • Xiao M-T, Huang Y-Y, Ye J, Guo Y-H (2008) Study on the kinetic characteristics of the asymmetric production of R-(−)-mandelic acid with immobilized Saccharomyces cerevisiae FD11b. Biochem Eng J 39:311–318

    Article  CAS  Google Scholar 

  • Xue Y-P, Xu M, Chen H-S, Liu Z-Q, Wang Y-J, Zheng Y-G (2013) A novel integrated bioprocess for efficient production of R-(−)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 17:213–220

    Article  CAS  Google Scholar 

  • Yan J, Zheng X, Du L, Li S (2014a) Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol Biofuel 7:55

    Article  CAS  Google Scholar 

  • Yan J, Zheng X, Li S (2014b) A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production. Biores Technol 151:43–48

    Article  CAS  Google Scholar 

  • Yoshida A, Hama S, Tamadani N, Noda H, Fukuda H, Kondo A (2012) Continuous production of biodiesel using whole-cell biocatalysts: sequential conversion of an aqueous oil emulsion into anhydrous product. Biochem Eng J 68:7–11

    Article  CAS  Google Scholar 

  • Yu T, Lin W, McSwain BS, Yu M, Zhang X (2005) Biological fixed film systems. Water Environ Res 77:1263–1346

    Article  CAS  Google Scholar 

  • Zajkoska P, Rosenberg M, Heath R, Malone KJ, Stloukal R, Turner NJ, Rebroš M (2015) Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl Microbiol Biotechnol 99:1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Prabhu P, Lee JK (2010) Alginate immobilization of recombinant Escherichia coli whole cells harboring l-arabinose isomerase for l-ribulose production. Bioprocess Biosyst Eng 33:741–748

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-F, Liu Z-Q, Zhang X-H, Zheng Y-G (2014) Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules. Chem Pap 68:53–64

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU (Grant Number: ITMS 26240220057—50%), by the Slovak Research and Development Agency, Grant No. APVV-15-0227 and by the Slovak Grant Agency for Science VEGA 2/0090/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gemeiner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research involving human participants, animals, plants and microorganisms

This article does not contain any studies with human participants or animals performed by any of the authors. Experiments involving plants or microorganisms taken outside the authors‘country have been with the correct authorization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polakovič, M., Švitel, J., Bučko, M. et al. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 39, 667–683 (2017). https://doi.org/10.1007/s10529-017-2300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2300-y

Keywords

Navigation