Skip to main content
Log in

Recent research progress with phospholipase C from Bacillus cereus

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce phosphate monoesters and diacylglycerol. It has many applications in the enzymatic degumming of plant oils. PLC Bc , a bacterial PLC from Bacillus cereus, is an optimal choice for this activity in terms of its wide substrate spectrum, high activity, and approved safety. Unfortunately, its large-scale production and reliable high-throughput screening of PLC Bc remain challenging. Herein, we summarize the research progress regarding PLC Bc with emphasis on the screening methods, expression systems, catalytic mechanisms and inhibitor of PLC Bc . This review hopefully will inspire new achievements in related areas, to promote the sustainable development of PLC Bc and its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antikainen NM, Hergenrother PJ, Harris MM, Corbett W, Martin SF (2003a) Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site. Biochemistry 42:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Antikainen NM, Monzingo AF, Franklin CL, Robertus JD, Martin SF (2003b) Using X-ray crystallography of the Asp55Asn mutant of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus to support the mechanistic role of Asp55 as the general base. Arch Biochem Biophys 417:81–86

    Article  PubMed  CAS  Google Scholar 

  • Barton NR (2008) A new process for degumming: the use of phospholipase C to improve yields during refining of high phosphorus vegetable oils. In: 99th AOCS annual meeting and expo, Seattle: abstracts, p 120

  • Benfield AP, Goodey NM, Phillips LT, Martin SF (2007) Structural studies examining the substrate specificity profiles of PC-PLC Bc protein variants. Arch Biochem Biophys 460:41–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bulnes PG, Roura AG, Canals D, Delgado A, Casas J, Llebaria A (2010) 2-Aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLC Bc . Bioorg Med Chem 18:8549–8555

    Article  Google Scholar 

  • Cheong DE, Choi JH, Song JJ, Kim GJ (2013) Construction of non-invasively constitutive expression vectors using a metagenome-derived promoter for soluble expression of proteins. Bioprocess Biosyst Eng 36:667–676

    Article  PubMed  CAS  Google Scholar 

  • Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340

    Article  CAS  Google Scholar 

  • Dijkstra AJ (2010) Enzymatic degumming. Eur J Lipid Sci Technol 112:1178–1189

    Article  CAS  Google Scholar 

  • Durban M, Bornscheuer U (2003) An assay system for the detection of phospholipase C activity. Eur J Lipid Sci Technol 105:633–637

    Article  CAS  Google Scholar 

  • Durban MA, Bornscheuer UT (2007) An improved assay for the determination of phospholipase C activity. Eur J Lipid Sci Technol 109:469–473

    Article  CAS  Google Scholar 

  • Durban MA, Silbersack J, Schweder T, Schauer F, Bornscheuer UT (2007) High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biotechnol 74:634–639

    Article  PubMed  CAS  Google Scholar 

  • Flieger A, Gong SM, Faigle M, Neumeister B (2000) Critical evaluation of p-nitrophenylphosphorylcholine (p-NPPC) as artificial substrate for the detection of phospholipase C. Enzyme Microb Technol 26:451–458

    Article  Google Scholar 

  • Franklin CL, Li H, Martin SF (2003) Design, synthesis, and evaluation of water-soluble phospholipid analogues as inhibitors of phospholipase C from Bacillus cereus. J Org Chem 68:7298–7307

    Article  PubMed  CAS  Google Scholar 

  • Graille J, Pina M, Montet D (1988) Biotechnologie des lipides: quelques applications possibles. Riv Ital Sostanze Gr 65:423–428

    CAS  Google Scholar 

  • Gramatikova S, Hazlewood G, Lam D, Barton NR (2007) US Patent 7,226,771

  • Gramatikova S, Hazlewood G, Lam D, Barton NR (2008) US Patent Application Publication 2008/0317731

  • Grit M, Underberg WJ, Crommelin DJ (1993) Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersions. J Pharm Sci 82:362–366

    Article  PubMed  CAS  Google Scholar 

  • Hansen S, Kristian L, Hough H, Hough E (1992) Crystal-structures of phosphate, iodide and iodate-inhibited phospholipase C from Bacillus cereus and structural investigations of the binding of reaction products and a substrate-analog. J Mol Biol 225:543–549

    Article  PubMed  CAS  Google Scholar 

  • Hansen S, Hough E, Svensson LA, Wong YL, Martin SF (1993) Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog. J Mol Biol 234:179–187

    Article  PubMed  CAS  Google Scholar 

  • Hergenrother PJ, Martin SF (2001) Phosphatidylcholine-preferring phospholipase C from B. cereus. Function, structure, and mechanism. Bioorg Chem Biol Signal Transduct 211:131–167

    Article  CAS  Google Scholar 

  • Hergenrother PJ, Spaller MR, Haas MK, Martin SF (1995) Chromogenic assay for phospholipase C from Bacillus cereus. Anal Biochem 229:313–316

    Article  PubMed  CAS  Google Scholar 

  • Hough E et al (1989) High resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus. Nature 338:357–360

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Liang M, Xu Y, Aamir R, Chun L (2014) Characteristics and vegetable oils degumming of recombinant phospholipase B. Chem Eng J 237:23–28

    Article  CAS  Google Scholar 

  • Ivanova N et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  PubMed  CAS  Google Scholar 

  • Johansen T, Holm T, Guddal PH, Sletten K, Haugli FB, Little C (1988) Cloning and sequencing of the gene encoding the phosphatidylcholine preferring phospholipase C of Bacillus cereus. Gene 65:293–304

    Article  PubMed  CAS  Google Scholar 

  • Kozawa O, Suzuki A, Kaida T, Tokuda H, Uematsu T (1997) Tumor necrosis factor-alpha autoregulates interleukin-6 synthesis via activation of protein kinase C—function of sphingosine 1-phosphate and phosphatidylcholine-specific phospholipase C. J Biol Chem 272:25099–25104

    Article  PubMed  CAS  Google Scholar 

  • Kuppe A, Evans LM, Mcmillen DA, Griffith OH (1989) Phosphatidylinositol specific phospholipase C of Bacillus cereus—cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171:6077–6083

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee J, Kim Y, Min D (2010) Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J Am Chem Soc Commun 132:14714–14717

    Article  CAS  Google Scholar 

  • Li YH, Maher P, Schubert D (1998) Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc Natl Acad Sci USA 95:7748–7753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liao RZ, Yu JG, Himo F (2010) Reaction mechanism of the trinuclear zinc enzyme phospholipase C: a density functional theory study. J Phys Chem B 114:2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ogawa K, Schanze KS (2008) Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C. Anal Chem 80:150–158

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Gu J, Xie W, Yu H (2013) Directed co-evolution of an endoglucanase and a β-glucosidase in Escherichia coli by a novel high-throughput screening method. Chem Commun 49:7219–7221

    Article  CAS  Google Scholar 

  • Liu M, Xie W, Xu H, Gu J, Lv X, Yu H, Ye L (2014) Directed evolution of an exoglucanase facilitated by a co-expressed β-glucosidase and construction of a whole engineered cellulase system in Escherichia coli. Biotechnol Lett 36:1801–1807

    Article  PubMed  CAS  Google Scholar 

  • Luberto C, Hannun YA (1998) Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation—does sphingomyelin synthase account for the putative, phosphatidylcholine-specific phospholipase C? J Biol Chem 273:14550–14559

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Spaller MR, Hergenrother PJ (1996) Expression and site-directed mutagenesis of the phosphatidylcholine-preferring phospholipase C of Bacillus cereus: probing the role of the active site Glu146. Biochemistry 35:12970–12977

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Follows BC, Hergenrother PJ, Franklin CL (2000a) A novel class of zinc-binding inhibitors for the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. J Org Chem 65:4509–4514

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Follows BC, Hergenrother PJ, Trotter BK (2000b) The choline binding site of phospholipase C (Bacillus cereus): insights into substrate specificity. Biochemistry 39:3410–3415

    Article  PubMed  CAS  Google Scholar 

  • McGaughey CA, Chu HP (1948) The egg-yolk reaction of aerobic sporing Bacilli. J Gen Microbiol 2:334–340

    Article  CAS  Google Scholar 

  • Roberts MF, Wu YQ, Zhou C, Geng D, Tan C (1996) Mechanism and structure based inhibitors of phospholipase C enzymes. Adv Enzyme Regul 36:57–71

    Article  PubMed  CAS  Google Scholar 

  • Roura AG, Casas J, Llebaria A (2002) Synthesis and phospholipase C inhibitory activity of D609 diastereomers. Lipids 37:401–406

    Article  Google Scholar 

  • Roura AG, Navarro I, Delgado A, Llebaria A, Casas J (2004) Disclosing new inhibitors by finding similarities in three-dimensional active-site architectures of polynuclear zinc phospholipases and aminopeptidases. Angew Chem Int Ed 43:862–865

    Article  Google Scholar 

  • Seo K, Rhee J (2004) High-level expression of recombinant phospholipase C form Bacillus cereus in Pichia pastoris and its characterization. Biotechnol Lett 26:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Sø JB, Turner M (2007). US Patent Application Publication 2007/0298157

  • Sundell S, Hansen S, Hough E (1994) A proposal for the catalytic mechanism in phospholipase-C based on interaction energy and distance geometry calculations. Protein Eng 7:571–577

    Article  PubMed  CAS  Google Scholar 

  • Tan CA, Hehir MJ, Roberts MF (1997) Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from Bacillus cereus. Protein Expr Purif 10:365–372

    Article  PubMed  CAS  Google Scholar 

  • Thrige DD, Buur JRB, Jorgensen FS (1997) Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study. Biopolymers 42:319–336

    Article  Google Scholar 

  • Wargovich MJ et al (2000) Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis 21:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Zhang L et al (2010) D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein E−/− mice a role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 30:U411–U490

    Article  Google Scholar 

  • Zufarov O, Schmidt Š, Sekretár S (2008) Degumming of rapeseed and sunflower oils. ACS 1:321–328

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Ye, L., Xu, J. et al. Recent research progress with phospholipase C from Bacillus cereus . Biotechnol Lett 38, 23–31 (2016). https://doi.org/10.1007/s10529-015-1962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1962-6

Keywords

Navigation