Skip to main content
Log in

Identification of a novel fosfomycin-resistant UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from a soil metagenome

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A soil metagenomic library was constructed and screened for clones that conferred fosfomycin resistance. A novel protein with 46 % identity to UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Desulfuromonas acetoxidans DSM 684 (GenBank accession number: ZP_01311756) was identified. Multiple sequence alignment revealed that the novel protein was a natural MurA, in which an aspartic acid instead of a cysteine was located in the active site. An Asp120Cys mutant of Escherichia coli was constructed from the subclone through site-specific mutagenesis, and minimum inhibitory concentration of fosfomycin for the resistant subclone and its mutant were determined. These results showed that fosfomycin resistance was a result of the aspartic acid in the active site. Analysis of all existing MurA sequences revealed that MurAs with an active site aspartic acid that can confer fosfomycin resistance occur in ~14 % of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3(2):243–251

    Article  PubMed  CAS  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259

    Article  PubMed  CAS  Google Scholar 

  • Arca P, Hardisson C, Suarez JE (1990) Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother 34(5):844–848

    Article  PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2010) Performance standards for antimicrobial susceptibility testing: twentieth informational supplement M100–S20. CLSI, Wayne

    Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  PubMed  CAS  Google Scholar 

  • De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145(Pt 11):3177–3184

    PubMed  Google Scholar 

  • Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, McManus PS, Handelsman J (2010) Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl Environ Microbiol 76(13):4396–4401

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI (2009) Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 34(2):111–120

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Prieto J, Saenz MC, Sanchez JE (1977) Sensitivity of bacteroidaceae to fosfomycin. Chemotherapy 23(Suppl 1):45–50

    PubMed  Google Scholar 

  • Horii T, Kimura T, Sato K, Shibayama K, Ohta M (1999) Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother 43(4):789–793

    PubMed  CAS  Google Scholar 

  • Jiang S, Gilpin ME, Attia M, Ting YL, Berti PJ (2011) Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry 50(12):2205–2212

    Article  PubMed  CAS  Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ, Kropp H (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci 235:364–386

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35(15):4923–4928

    Article  PubMed  CAS  Google Scholar 

  • Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS (2010) Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol 76(15):5321–5326

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185(4):1218–1228

    Article  PubMed  CAS  Google Scholar 

  • O’Hara K (1993) Two different types of fosfomycin resistance in clinical isolates of Klebsiella pneumoniae. FEMS Microbiol Lett 114(1):9–16

    Article  PubMed  Google Scholar 

  • Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K (1996) Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 4(12):1465–1474

    Article  PubMed  CAS  Google Scholar 

  • Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, Muratani T, Matsumoto T, Nakahama C, Tomono K (2010) Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35(4):333–337

    Article  PubMed  CAS  Google Scholar 

  • Torres-Cortes G, Millan V, Ramirez-Saad HC, Nisa-Martinez R, Toro N, Martinez-Abarca F (2011) Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. Environ Microbiol 13(4):1101–1114

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20(6):616–622

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program Grants 2007CB513002 and 2009CB522605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoli Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, G., Hu, Y., Lu, N. et al. Identification of a novel fosfomycin-resistant UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from a soil metagenome. Biotechnol Lett 35, 273–278 (2013). https://doi.org/10.1007/s10529-012-1074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1074-5

Keywords

Navigation