Skip to main content
Log in

Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Little is known about the mechanism of how trehalose responds to various abiotic stresses although trehalose is considered as an important protectant in fungi. We investigated the role of nitric oxide (NO) in regulating trehalose accumulation during heat stress in Pleurotus eryngii var. tuoliensis. The addition of 100 or 200 g trehalose/l significantly inhibited the production of thiobarbituric acid-reactive substance under heat stress in mycelial cells. High temperature induced endogenous trehalose accumulation and sodium nitroprusside, a NO donor, further enhanced trehalose accumulation. Finally, heat-induced trehalose accumulation could be arrested by the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-1-oxyl-3-oxide, at 250 μM by inhibiting the transcription of trehalose phosphate synthase gene. Thus NO plays an important role in the regulation of trehalose accumulation during abiotic stresses in P. eryngii var. tuoliensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Argüelles JC (1997) Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol Lett 146:65–71

    Article  PubMed  Google Scholar 

  • Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chiang KT, Shinyashiki M, Switzer CH, Valentine JS, Gralla EB, Thiele DJ, Fukuto JM (2000) Effects of nitric oxide on the copper-responsive transcription factor ace1 in Saccharomyces cerevisiae: cytotoxic and cytoprotective actions of nitric oxide. Arch Biochem Biophys 377:296–303

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152:2625–2634

    Article  PubMed  CAS  Google Scholar 

  • Domitrovic T, Palhano FL, Barja-Fidalgo C, DeFreitas M, Orlando MTD, Fernandes PMB (2003) Role of nitric oxide in the response of Saccharomyces cerevisiae cells to heat shock and high hydrostatic pressure. FEMS Yeast Res 3:341–346

    Article  PubMed  CAS  Google Scholar 

  • Gong XY, Fu YP, Jiang DH, Li GQ, Yi XH, Peng YL (2007) l-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet Biol 44:1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760:340–346

    Article  PubMed  CAS  Google Scholar 

  • Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  PubMed  CAS  Google Scholar 

  • Kong WW, Huang CY, Chen Q, Zou YJ, Zhang JX (2012) Nitric oxide alleviates heat stress-induced oxidative in Pleurotus eryngii var. tuoliensis. Fungal Genet Biol 49:15–20

    Article  PubMed  CAS  Google Scholar 

  • Li B, Fu YP, Jiang DH, Xie JT, Cheng JS, Li GQ, Hamid MI, Yi XH (2010) Cyclic GMP as a second messenger in the nitric oxide-mediated conidiation of the mycoparasite Coniothyrium minitans. Appl Environ Microbiol 76:2830–2836

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang YH (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  PubMed  CAS  Google Scholar 

  • Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett 243:219–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Fund for Agro-Scientific Research in the Public Interest (3–27) and China Agriculture Research System (CARS-24), Ministry of Agriculture of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xia Zhang.

Additional information

Wei-Wei Kong and Chen-Yang Huang are contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, WW., Huang, CY., Chen, Q. et al. Nitric oxide is involved in the regulation of trehalose accumulation under heat stress in Pleurotus eryngii var. tuoliensis . Biotechnol Lett 34, 1915–1919 (2012). https://doi.org/10.1007/s10529-012-0988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0988-2

Keywords

Navigation