Skip to main content

Advertisement

Log in

Improving the yield from fermentative hydrogen production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Efforts to increase H2 yields from fermentative H2 production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H2 yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H2 yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H2 yield. Lower sparging rates may improve the H2 yield with less energy input and product dilution. The reasons why sparging improves H2 yields are unknown, but recent measurements of dissolved H2 concentrations during sparging suggest the assumption of decreased inhibition of the H2-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H2 yield while others show the opposite. Discovering the reasons for higher H2 yields during dissolved gas removal and changes in OLR will help improve H2 yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn Y, Park EJ, Oh YK, Park S, Webster G, Weightman AJ (2005) Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol Lett 249(1):31–38

    Article  PubMed  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  PubMed  CAS  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14(9):1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Cheong DY, Hansen CL (2006) Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 72(4):635–643

    Article  PubMed  CAS  Google Scholar 

  • Crabbendam PM, Neijssel OM, Tempest DW (1985) Metabolic and energetic aspects of the growth of clostridium-butyricum on glucose in chemostat culture. Arch Microbiol 142(4):375–382

    Article  PubMed  CAS  Google Scholar 

  • Dixon NM, Kell DB (1989) The inhibition by CO2 of the growth and metabolism of microorganisms. J Appl Bacteriol 67(2):109–136

    PubMed  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2002a) Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78(1):44–52

    Article  CAS  Google Scholar 

  • Fang HHP, Zhang T, Liu H (2002b) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58(1):112–118

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52(1–2):21–29

    PubMed  CAS  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: Challenges for process optimisation. Int J Hydrogen Energy 27(11–12):1339–1347

    Article  CAS  Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30(5):471–483

    Article  CAS  Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84(6):619–626

    Article  PubMed  CAS  Google Scholar 

  • Iyer P, Bruns MA, Zhang HS, Van Ginkel S, Logan BE (2004) H2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66(2):166–173

    Article  PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microbial Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Kataoka N, Miya A, Kiriyama K (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36(6–7):41–47

    Article  CAS  Google Scholar 

  • Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K (2005) Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100(5):524–530

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Han SK, Kim SH, Shin HS (2006a) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 31(15): 2158–2169

    Article  CAS  Google Scholar 

  • Kim SH, Han SK, Shin HS (2006b) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 41(1):199–207

    Article  CAS  Google Scholar 

  • Kraemer JT, Bagley DM (2006) Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging. Biotechnol Lett 28(18):1485–1491

    Article  PubMed  CAS  Google Scholar 

  • Kraemer JT, Bagley DM (2005) Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ Sci Technol 39(10):3819–3825

    Article  PubMed  CAS  Google Scholar 

  • Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL (2006) Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng 93(5):971–979

    Article  PubMed  CAS  Google Scholar 

  • Lamed RJ, Lobos JH, Su TM (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol 54(5):1216–1221

    PubMed  CAS  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68(3):269–278

    Article  PubMed  CAS  Google Scholar 

  • Liang TM, Cheng SS, Wu KL (2002) Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27(11–12):1157–1165

    Article  CAS  Google Scholar 

  • Lin C, Wu S, Chang J (2006) Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int J Hydrogen Energy 31(15):2200–2210

    Article  CAS  Google Scholar 

  • Liu DW, Liu DP, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236

    Article  PubMed  CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38(9):160A–167A

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 28(11):831–835

    Article  PubMed  CAS  Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73(1):59–65

    Article  CAS  Google Scholar 

  • Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrogen Energy 27(11–12):1399–1405

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: Various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  PubMed  CAS  Google Scholar 

  • Nishio N, Nakashimada Y (2004) High rate production of hydrogen/methane from various substrates and wastes. Recent Prog Biochem Biomed Eng Japan I 90:63–87

    CAS  Google Scholar 

  • Oh SE, Lyer P, Bruns MA, Logan BE (2004a) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87(1):119–127

    Article  CAS  Google Scholar 

  • Oh SE, Van Ginkel S, Logan BE (2003a) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190

    Article  CAS  Google Scholar 

  • Oh YK, Kim SH, Kim MS, Park S (2004b) Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6):690–698

    Article  CAS  Google Scholar 

  • Oh YK, Seol EH, Kim JR, Park S (2003b) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy 28(12):1353–1359

    Article  CAS  Google Scholar 

  • Oh YK, Seol EH, Lee EY, Park S (2002) Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 27(11–12):1373–1379

    Article  CAS  Google Scholar 

  • Park W, Hyun SH, Oh SE, Logan BE, Kim IS (2005) Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol 39(12):4416–4420

    Article  PubMed  CAS  Google Scholar 

  • Shizas I, Bagley DM (2005) Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci Technol 52(1–2):139–144

    PubMed  CAS  Google Scholar 

  • Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23(7):559–563

    Article  CAS  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001a) Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl Microbiol Biotechnol 57(1–2):65–73

    CAS  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001b) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57(4):555–562

    Article  CAS  Google Scholar 

  • Van Ginkel S, Logan BE (2005a) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39(23):9351–9356

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Logan B (2005b) Increased biological hydrogen production with reduced organic loading. Water Res 39(16):3819–3826

    Article  CAS  Google Scholar 

  • Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2006) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93(5):934–946

    Article  PubMed  CAS  Google Scholar 

  • Yang HJ, Shao P, Lu TM, Shen JQ, Wang DF, Xu ZN, Yuan X (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 31(10):1306–1313

    Article  CAS  Google Scholar 

  • Yu HQ, Zhu ZH, Hu WR, Zhang HS (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27(11–12):1359–1365

    Article  CAS  Google Scholar 

  • Zhang JJ, Li XY, Oh SE, Logan BE (2004) Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnol Bioeng 88(7):854–860

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 31(14):1980–1988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the William H. Doherty Ontario Graduate Scholarship in Science & Technology and the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, J.T., Bagley, D.M. Improving the yield from fermentative hydrogen production. Biotechnol Lett 29, 685–695 (2007). https://doi.org/10.1007/s10529-006-9299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9299-9

Keywords

Navigation