Skip to main content
Log in

Identification of a Toll-Like Receptor 1 in Guinea Fowl (Agelastes niger)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, thus playing important roles in host defense. This study determined the first sequence of a TLR1 type 1 in the guinea fowl (GFTLR1). The open reading frame of GFTLR1 type 1 contains 2,115 nucleotides and encodes 705 amino acids. Amino acid analysis indicated that GFTLR1 type 1 shares 92.3 % homology with the green jungle fowl, 92.1 % with the chicken, 90.4 % with the turkey, and 84.4 % with Cooper’s hawk. Genetic patterns were identified within the TLR1 type 1 of the chicken and the guinea fowl. GFTLR1 type 1 was found to have 92 polymorphic amino acid sites, of which 16 were in the leucine-rich repeat (LRR) domain, 3 in a C-terminal LRR domain, and 6 in a Toll/interleukin-1 receptor domain. The data showed that avian TLR1 type 1 genes are under purifying selection and highly conserved, because dN/dS was less than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  • Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715

    Article  PubMed  CAS  Google Scholar 

  • Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, Kidd JR, Kidd KK, Alcais A, Ragimbeau J, Pellegrini S, Abel L, Casanova JL, Quintana-Murci L (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5:1–18

    Article  Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Rehli M (2002) Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270:1–21

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Jiang ZF, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24:353–389

    Article  PubMed  CAS  Google Scholar 

  • Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI (2002) Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3:354–359

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lans NTN, Quy HT, Chau TTH, Rodrigues S, Nachman A, Janer M, Hien TT, Farrar JJ, Aderem A (2007) A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37:2280–2289

    Article  PubMed  CAS  Google Scholar 

  • Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8:288

    Article  PubMed  Google Scholar 

  • Jin MS, Lee JO (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  PubMed  CAS  Google Scholar 

  • Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin C, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178:7520–7524

    PubMed  CAS  Google Scholar 

  • Kubarenko A, Frank M, Weber ANR (2007) Structure–function relationships of Toll-like receptor domains through homology modelling and molecular dynamics. Biochem Soc Trans 35:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, Loredo-Osti JC, Morgan K, Malo D (2003) Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun 71:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38:12–19

    Article  PubMed  CAS  Google Scholar 

  • Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate Toll-like receptors. BMC Genomics 8:124

    Article  PubMed  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    Article  PubMed  CAS  Google Scholar 

  • Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci 114:347–360

    Article  PubMed  Google Scholar 

  • Nagpal K, Plantinga TS, Wong J, Monks BG, Gay NJ, Netea MG, Fitzgerald KA, Golenbock DT (2009) A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J Biol Chem 284:25742–25748

    Article  PubMed  CAS  Google Scholar 

  • Nahashon SN, Aggrey SE, Adefope NA, Amenyenu A, Wright D (2006) Growth characteristics of pearl gray guinea fowl as predicted by the Richards, Gompertz, and logistic models. Poult Sci 85:359–363

    PubMed  CAS  Google Scholar 

  • Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60:727–735

    Article  PubMed  CAS  Google Scholar 

  • Peter TF, Mahan SM, Burridge MJ (2001) Resistance of leopard tortoises and helmeted guinea fowl to Cowdria ruminantium infection (heartwater). Vet Parasitol 98:299–307

    Article  PubMed  CAS  Google Scholar 

  • Pino-Yanes M, Corrales A, Casula M, Blanco J, Muriel A, Espinosa E, Garcia-Bello M, Torres A, Ferrer M, Zavala E, Villar J, Flores C (2010) Common variants of TLR1 associate with organ dysfunction and sustained pro-inflammatory responses during sepsis. PLoS ONE 5:e13759

    Article  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  • Ruan W, Wu Y, Zheng SJ (2012) Different genetic patterns in avian Toll-like receptor (TLR)5 genes. Mol Biol Rep 39(4):3419–3426

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62

    Article  PubMed  Google Scholar 

  • Uciechowski P, Imhoff H, Lange C, Meyer CG, Browne EN, Kirsten DK, Schroder AK, Schaaf B, Al-Lahham A, Reinert RR, Reiling N, Haase H, Hatzmann A, Fleischer D, Heussen N, Kleines M, Rink L (2011) Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J Leukoc Biol 90(2):377–388

    Article  PubMed  CAS  Google Scholar 

  • Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A (2009) MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-κB proinflammatory responses. J Biol Chem 284:24192–24203

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C (2008) Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 181:1245–1254

    PubMed  CAS  Google Scholar 

  • Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ (2009) Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol 30:124–130

    Article  PubMed  CAS  Google Scholar 

  • White SN, Taylor KH, Abbey CA, Gill CA, Womack JE (2003) Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proc Natl Acad Sci USA 100:10364–10369

    Article  PubMed  CAS  Google Scholar 

  • Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27:2172–2186

    Article  PubMed  CAS  Google Scholar 

  • Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the Toll-like receptor 5 in primates. Mol Biol Evol 26:937–949

    Article  PubMed  CAS  Google Scholar 

  • Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, Ruzinski JT, Rona G, Black RA, Stratton S, Jarvik GP, Hajjar AM, Nickerson DA, Rieder M, Sevransky J, Maloney JP, Moss M, Martin G, Shanholtz C, Garcia JGN, Gao L, Brower R, Barnes KC, Walley KR, Russell JA, Martin TR (2008) Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 178:710–720

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Yilmaz A, Shen SX, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56:743–753

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhua Wu or Wenke Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Ruan, W., Cui, D. et al. Identification of a Toll-Like Receptor 1 in Guinea Fowl (Agelastes niger). Biochem Genet 50, 702–716 (2012). https://doi.org/10.1007/s10528-012-9513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9513-5

Keywords

Navigation