Skip to main content

Advertisement

Log in

Studying Werner syndrome to elucidate mechanisms and therapeutics of human aging and age-related diseases

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging is a natural and unavoidable part of life. However, aging is also the primary driver of the dominant human diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases, including Alzheimer’s disease. Unraveling the sophisticated molecular mechanisms of the human aging process may provide novel strategies to extend ‘healthy aging’ and the cure of human aging-related diseases. Werner syndrome (WS), is a heritable human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, etiological exploration of WS can shed light on the mechanisms of normal human aging and facilitate the development of interventional strategies to improve healthspan. Here, we summarize the latest progress of the molecular understandings of WRN protein, highlight the advantages of using different WS model systems, including Caenorhabditis elegans, Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further studies on WS will propel drug development for WS patients, and possibly also for normal age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn B, Harrigan JA, Indig FE, Wilson DM III, Bohr VA (2004) Regulation of WRN helicase activity in human base excision repair. J Biol Chem 279:53465–53474

    Article  CAS  PubMed  Google Scholar 

  • Aumailley L, Garand C, Dubois MJ, Johnson FB, Marette A, Lebel M (2015) Metabolic and phenotypic differences between mice producing a Werner syndrome helicase mutant protein and Wrn null mice. PLoS ONE 10:e0140292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berube J, Garand C, Lettre G, Lebel M (2013) The non-synonymous polymorphism at position 114 of the WRN protein affects cholesterol efflux in vitro and correlates with cholesterol levels in vivo. Exp Gerontol 48:533–538

    Article  CAS  PubMed  Google Scholar 

  • Bohr VA (2005) Deficient DNA repair in the human progeroid disorder, Werner syndrome. Mutat Res 577:252–259

    Article  CAS  PubMed  Google Scholar 

  • Bohr VA, Brosh RM Jr, von Kobbe C, Opresko P, Karmakar P (2002) Pathways defective in the human premature aging disease Werner syndrome. Biogerontology 3:89–94

    Article  CAS  PubMed  Google Scholar 

  • Bolterstein E, Rivero R, Marquez M, McVey M (2014) The Drosophila Werner exonuclease participates in an exonuclease-independent response to replication stress. Genetics 197:643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boubriak I, Mason PA, Clancy DJ, Dockray J, Saunders RD, Cox LS (2009) DmWRNexo is a 3′–5′ exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease. Biogerontology 10:267–277

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, Bohr VA (2002) Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 37:491–506

    Article  CAS  PubMed  Google Scholar 

  • Castro E, Edland SD, Lee L, Ogburn CE, Deeb SS, Brown G, Panduro A, Riestra R, Tilvis R, Louhija J et al (2000) Polymorphisms at the Werner locus: II. 1074Leu/Phe, 1367Cys/Arg, longevity, and atherosclerosis. Am J Med Genet 95:374–380

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Jasper H, Ho TT, Passegue E (2016) Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol 18:823–832

    Article  CAS  PubMed  Google Scholar 

  • Chang S (2005) A mouse model of Werner syndrome: what can it tell us about aging and cancer? Int J Biochem Cell Biol 37:991–999

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Oshima J (2002) Werner syndrome. J Biomed Biotechnol 2:46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet (London, England) 362:440–445

    Article  CAS  Google Scholar 

  • Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, Kassem L, Park JH, Chatterjee N, Jamain S et al (2013) Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 18:195–205

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S, Nicolette ML, Paull TT, Campisi J, Seidman M, Bohr VA (2006) Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung HH, Liu X, Canterel-Thouennon L, Li L, Edmonson C, Rennert OM (2014) Telomerase protects Werner syndrome lineage-specific stem cells from premature aging. Stem Cell Rep 2:534–546

    Article  CAS  Google Scholar 

  • Cheung HH, Pei D, Chan WY (2015) Stem cell aging in adult progeria. Cell Regen (London, England) 4:6

    Google Scholar 

  • Cogger VC, Svistounov D, Warren A, Zykova S, Melvin RG, Solon-Biet SM, O’Reilly JN, McMahon AC, Ballard JW, De Cabo R et al (2014) Liver aging and pseudocapillarization in a Werner syndrome mouse model. J Gerontol Ser A Biol Sci Med Sci 69:1076–1086

    Article  CAS  Google Scholar 

  • Cox LS, Clancy DJ, Boubriak I, Saunders RD (2007) Modeling Werner syndrome in Drosophila melanogaster: hyper-recombination in flies lacking WRN-like exonuclease. Ann N Y Acad Sci 1119:274–288

    Article  CAS  PubMed  Google Scholar 

  • Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–1953

    Article  CAS  PubMed  Google Scholar 

  • Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci USA 104:2205–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau DL, Popuri V, Opresko PL, Bohr VA (2014) Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83:519–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallaire A, Garand C, Paquel ER, Mitchell SJ, de Cabo R, Simard MJ, Lebel M (2012) Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging. Aging 4:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallaire A, Proulx S, Simard MJ, Lebel M (2014) Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span. BMC Genomics 15:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, de Souza Pinto N, Ramos W, Greenberg MM, Hazra TK et al (2007) The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 282:26591–26602

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollineni RC, Wilson MA et al (2016a) NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24:566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA (2016b) Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17:308–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017) NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol Med 23:899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S (1993) The gene responsible for Werner syndrome may be a cell division “counting” gene. Proc Natl Acad Sci USA 90:12030–12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich K, Lee L, Leistritz DF, Nurnberg G, Saha B, Hisama FM, Eyman DK, Lessel D, Nurnberg P, Li C et al (2010) WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations. Hum Genet 128:103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JP, Lachapelle S, Garand C, Tsofack SP, Coulombe Y, Caron MC, Poirier GG, Masson JY, Lebel M (2016) Different non-synonymous polymorphisms modulate the interaction of the WRN protein to its protein partners and its enzymatic activities. Oncotarget 7:85680–85696

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto M, Ishikawa Y, Sugimoto M, Furuichi Y (2013) Werner syndrome: a changing pattern of clinical manifestations in Japan (1917–2008). Biosci Trends 7:13–22

    CAS  PubMed  Google Scholar 

  • Goto M, Hayata K, Chiba J, Matsuura M, Iwaki-Egawa S, Watanabe Y (2015) Multiplex cytokine analysis of Werner syndrome. Intractable Rare Dis Res 4:190–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima J, Russell DW, Swisshelm K et al (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17:1569–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gray MD, Wang L, Youssoufian H, Martin GM, Oshima J (1998) Werner helicase is localized to transcriptionally active nucleoli of cycling cells. Exp Cell Res 242:487–494

    Article  CAS  PubMed  Google Scholar 

  • Harrigan JA, Piotrowski J, Di Noto L, Levine RL, Bohr VA (2007) Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions. J Biol Chem 282:36403–36411

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Suzuki S, Hinokio Y, Yamada T, Yoshizumi S, Suzuki C, Satoh J, Oka Y (2005) WRN gene 1367 Arg allele protects against development of type 2 diabetes mellitus. Diabetes Res Clin Pract 69:287–292

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′ → 5′ exonuclease. Nat Genet 20:114–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J (2000) Characterization of the human and mouse WRN 3′ → 5′ exonuclease. Nucleic Acids Res 28:2396–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H et al (2006) The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27:558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun M, Bohr VA, Ahn B (2008) Biochemical characterization of the WRN-1 RecQ helicase of Caenorhabditis elegans. Biochemistry 47:7583–7593

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim B, Sheerin AN, Jennert-Burston K, Bird JL, Massala MV, Illsley M, James SE, Faragher RG (2016) Absence of premature senescence in Werner’s syndrome keratinocytes. Exp Gerontol 83:139–147

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Ishii A, Goto M, Ishikawa Y, Asaka R, Matsuura M, Hatamochi A et al (2011) Accelerated in vivo epidermal telomere loss in Werner syndrome. Aging (Albany NY) 3:417–429

    Article  Google Scholar 

  • Kamath-Loeb A, Loeb LA, Fry M (2012) The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLoS ONE 7:e30189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Cui H, Ramkumar C, Zhang H (2011) Regulation of senescence in cancer and aging. J Aging Res 2011:963172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulminski AM, Culminskaya I (2013) Genomics of human health and aging. Age (Dordrecht, Netherlands) 35:455–469

    Article  CAS  Google Scholar 

  • Kusano K, Berres ME, Engels WR (1999) Evolution of the RECQ family of helicases: a Drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151:1027–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumoto R, Muftuoglu M, Bohr VA (2007) The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 128:50–57

    Article  CAS  PubMed  Google Scholar 

  • Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 95:13097–13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebel M, Monnat RJ Jr (2018) Werner syndrome (WRN) gene variants and their association with altered function and age-associated diseases. Ageing Res Rev 41:82–97

    Article  CAS  PubMed  Google Scholar 

  • Lebel M, Spillare EA, Harris CC, Leder P (1999) The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 274:37795–37799

    Article  CAS  PubMed  Google Scholar 

  • Lebel M, Cardiff RD, Leder P (2001) Tumorigenic effect of nonfunctional p53 or p21 in mice mutant in the Werner syndrome helicase. Can Res 61:1816–1819

    CAS  Google Scholar 

  • Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R (2003) Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice. Am J Pathol 162:1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Yook JS, Han SM, Koo HS (2004) A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint. Development (Cambridge, England) 131:2565–2575

    Article  CAS  Google Scholar 

  • Lee SJ, Gartner A, Hyun M, Ahn B, Koo HS (2010) The Caenorhabditis elegans Werner syndrome protein functions upstream of ATR and ATM in response to DNA replication inhibition and double-strand DNA breaks. PLoS Genet 6:e1000801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Iglesias-Pedraz JM, Chen LY, Yin F, Cadenas E, Reddy S, Comai L (2014) Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13:367–378

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, Tang H, Liu Z, Deng H, Ye Y et al (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell 7:478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Fang EF, Sykora P, Kulikowicz T, Zhang Y, Becker KG, Croteau DL, Bohr VA (2014) Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis 5:e1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machwe A, Ganunis R, Bohr VA, Orren DK (2000) Selective blockage of the 3′ → 5′ exonuclease activity of WRN protein by certain oxidative modifications and bulky lesions in DNA. Nucleic Acids Res 28:2762–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machwe A, Karale R, Xu X, Liu Y, Orren DK (2011) The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks. Biochemistry 50:6774–6788

    Article  CAS  PubMed  Google Scholar 

  • Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T, Horvath S (2017) Accelerated epigenetic aging in Werner syndrome. Aging (Albany NY) 9:1143–1152

    Article  CAS  Google Scholar 

  • Maity J, Bohr VA, Laskar A, Karmakar P (2014) Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells. Biochem Biophys Acta 1842:2387–2394

    CAS  PubMed  Google Scholar 

  • Marciniak RA, Lombard DB, Johnson FB, Guarente L (1998) Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 95:6887–6892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason PA, Boubriak I, Robbins T, Lasala R, Saunders R, Cox LS (2013) The Drosophila orthologue of progeroid human WRN exonuclease, DmWRNexo, cleaves replication substrates but is inhibited by uracil or abasic sites: analysis of DmWRNexo activity in vitro. Age (Dordrecht, Netherlands) 35:793–806

    Article  CAS  Google Scholar 

  • Massip L, Garand C, Turaga RV, Deschenes F, Thorin E, Lebel M (2006) Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Exp Gerontol 41:157–168

    Article  CAS  PubMed  Google Scholar 

  • Massip L, Garand C, Paquet ER, Cogger VC, O’Reilly JN, Tworek L, Hatherell A, Taylor CG, Thorin E, Zahradka P et al (2010) Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 24:158–172

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Shimamoto A, Goto M, Furuichi Y (1997) Impaired nuclear localization of defective DNA helicases in Werner’s syndrome. Nat Genet 16:335–336

    Article  CAS  PubMed  Google Scholar 

  • Mead S, Uphill J, Beck J, Poulter M, Campbell T, Lowe J, Adamson G, Hummerich H, Klopp N, Ruckert IM et al (2012) Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP. Hum Mol Genet 21:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Nakayama R, Sato Y, Masutani M, Ogino H, Nakatani F, Chuman H, Beppu Y, Morioka H, Yabe H, Hirose H et al (2008) Association of a missense single nucleotide polymorphism, Cys1367Arg of the WRN gene, with the risk of bone and soft tissue sarcomas in Japan. Cancer Sci 99:333–339

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14:763–774

    Article  CAS  PubMed  Google Scholar 

  • Opresko PL, Calvo JP, von Kobbe C (2007) Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 128:423–436

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Hisama FM (2014) Search and insights into novel genetic alterations leading to classical and atypical Werner syndrome. Gerontology 60:239–246

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Campisi J, Tannock TC, Martin GM (1995) Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J Cell Physiol 162:277–283

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Yu CE, Piussan C, Klein G, Jabkowski J, Balci S, Miki T, Nakura J, Ogihara T, Ells J et al (1996) Homozygous and compound heterozygous mutations at the Werner syndrome locus. Hum Mol Genet 5:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Sidorova JM, Monnat RJ Jr (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114

    Article  CAS  PubMed  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12:2412–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1:30–39

    Article  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS (2003) Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner’s syndrome, and an essential replication factor, PCNA. Mech Ageing Dev 124:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ryu JS, Koo HS (2016) Roles of Caenorhabditis elegans WRN helicase in DNA damage responses, and a comparison with its mammalian homolog: a mini-review. Gerontology 62:296–303

    Article  CAS  PubMed  Google Scholar 

  • Ryu JS, Koo HS (2017) The Caenorhabditis elegans WRN helicase promotes double-strand DNA break repair by mediating end resection and checkpoint activation. FEBS Lett 591:2155–2166

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Cypro A, Martin GM, Oshima J (2014) Rapamycin decreases DNA damage accumulation and enhances cell growth of WRN-deficient human fibroblasts. Aging Cell 13:573–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salk D (1985) In vitro studies of Werner syndrome cells: aberrant growth and chromosome behavior. Basic Life Sci 35:419–426

    CAS  PubMed  Google Scholar 

  • Salk D, Bryant E, Hoehn H, Johnston P, Martin GM (1985) Growth characteristics of Werner syndrome cells in vitro. Adv Exp Med Biol 190:305–311

    Article  CAS  PubMed  Google Scholar 

  • Saunders RD, Boubriak I, Clancy DJ, Cox LS (2008) Identification and characterization of a Drosophila ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell 7:418–425

    Article  CAS  PubMed  Google Scholar 

  • Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM et al (2014) A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell Metab 20:840–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk JB et al (2012) Genetic signatures of exceptional longevity in humans. PLoS ONE 7:e29848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastiani P, Bae H, Sun FX, Andersen SL, Daw EW, Malovini A, Kojima T, Hirose N, Schupf N, Puca A et al (2013) Meta-analysis of genetic variants associated with human exceptional longevity. Aging (Albany NY) 5:653–661

    Article  Google Scholar 

  • Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA (2016) WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 7:13785

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamanna RA, Croteau DL, Lee JH, Bohr VA (2017) Recent advances in understanding Werner syndrome. F1000Res 6:1779

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen JC, Loeb LA (2000) Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. Nucleic Acids Res 28:3260–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen M, Zheng T, Lan Q, Zhang Y, Zahm SH, Wang SS, Holford TR, Leaderer B, Yeager M, Welch R et al (2006) Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma among women in Connecticut. Hum Genet 119:659–668

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, Oshimura M, Ishigaki Y, Hamasaki K, Kodama Y et al (2014) Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE 9:e112900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamoto A, Yokote K, Tahara H (2015) Werner Syndrome-specific induced pluripotent stem cells: recovery of telomere function by reprogramming. Front Genet 6:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sild M, Koca C, Bendixen MH, Frederiksen H, McGue M, Kolvraa S, Christensen K, Nexo B (2006) Possible associations between successful aging and polymorphic markers in the Werner gene region. Ann N Y Acad Sci 1067:309–310

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Shiratori M, Furuichi Y, Matsumoto T (2001) Diverged nuclear localization of Werner helicase in human and mouse cells. Oncogene 20:2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Szekely AM, Bleichert F, Numann A, Van Komen S, Manasanch E, Ben Nasr A, Canaan A, Weissman SM (2005) Werner protein protects nonproliferating cells from oxidative DNA damage. Mol Cell Biol 25:10492–10506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadokoro T, Rybanska-Spaeder I, Kulikowicz T, Dawut L, Oshima J, Croteau DL, Bohr VA (2013) Functional deficit associated with a missense Werner syndrome mutation. DNA Repair 12:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talaei F, van Praag VM, Henning RH (2013) Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. Pharmacol Res 74:34–44

    Article  CAS  PubMed  Google Scholar 

  • Uhrhammer NA, Lafarge L, Dos Santos L, Domaszewska A, Lange M, Yang Y, Aractingi S, Bessis D, Bignon YJ (2006) Werner syndrome and mutations of the WRN and LMNA genes in France. Hum Mutat 27:718–719

    Article  PubMed  Google Scholar 

  • Wang L, Ogburn CE, Ware CB, Ladiges WC, Youssoufian H, Martin GM, Oshima J (2000) Cellular Werner phenotypes in mice expressing a putative dominant-negative human WRN gene. Genetics 154:357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D et al (2018) Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis 9:923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrighton KH (2015) Stem cells: SIRT7, the UPR and HSC ageing. Nat Rev Mol Cell Biol 16:266–267

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P et al (2018) Differential stem cell aging kinetics in Hutchinson–Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RG, Kipling D (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24:16–17

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Nagata M, Hara K, Moriyama H, Yokono K (2010) Biguanide, but not thiazolidinedione, improved insulin resistance in Werner syndrome. J Am Geriatr Soc 58:181–182

    Article  PubMed  Google Scholar 

  • Ye L, Miki T, Nakura J, Oshima J, Kamino K, Rakugi H, Ikegami H, Higaki J, Edland SD, Martin GM et al (1997) Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am J Med Genet 68:494–498

    Article  CAS  PubMed  Google Scholar 

  • Yokote K, Saito Y (2008) Extension of the life span in patients with Werner syndrome. J Am Geriatr Soc 56:1770–1771

    Article  PubMed  Google Scholar 

  • Yokote K, Hara K, Mori S, Kadowaki T, Saito Y, Goto M (2004) Dysadipocytokinemia in Werner syndrome and its recovery by treatment with pioglitazone. Diabetes Care 27:2562–2563

    Article  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A et al (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zhang G, Kang L, Guan H (2015) Epigenetic regulation of Werner syndrome gene in age-related cataract. J Ophthalmol 2015:579695

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the work of the many researchers whose published papers we were unable to cite due to space limitations. We thank Prof. Vilhelm Bohr at the National Institute on Aging for critical reading of the manuscript. This research was supported by the HELSE SøR-ØST, Norway (E.F.F., #2017056), The Research Council of Norway (E.F.F., #262175 and #277813), and The Hong Kong General Research Fund (H.H.C. and W.Y.C., #Project Number 14121618) of the Research Grants Council. The E.F.F. Laboratory has CRADA arrangements with ChromaDex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro F. Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lautrup, S., Caponio, D., Cheung, HH. et al. Studying Werner syndrome to elucidate mechanisms and therapeutics of human aging and age-related diseases. Biogerontology 20, 255–269 (2019). https://doi.org/10.1007/s10522-019-09798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-019-09798-2

Keywords

Navigation