Skip to main content

Advertisement

Log in

Alzheimer’s as a metabolic disease

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Empirical evidence indicates that impaired mitochondrial energy metabolism is the defining characteristic of almost all cases of Alzheimer’s disease (AD). Evidence is reviewed supporting the general hypothesis that the up-regulation of OxPhos activity, a metabolic response to mitochondrial dysregulation, drives the cascade of events leading to AD. This mode of metabolic alteration, called the Inverse Warburg effect, is postulated as an essential compensatory mechanism of energy production to maintain the viability of impaired neuronal cells. This article appeals to the inverse comorbidity of cancer and AD to show that the amyloid hypothesis, a genetic and neuron-centric model of the origin of sporadic forms of AD, is not consistent with epidemiological data concerning the age-incidence rates of AD. A view of Alzheimer’s as a metabolic disease—a condition consistent with mitochondrial dysregulation and the Inverse Warburg effect, will entail a radically new approach to diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cornwell GG, Westermark P (1980) Senile amyloidosis: a protean manifestation of the aging process. J Clin Pathol 33(12):1146–1152

    Google Scholar 

  • Demetrius LA (2004) Caloric restriction, metabolic rate, and entropy. J Gerontol 59(9):B902–B915

    Article  Google Scholar 

  • Demetrius LA, Simon DK (2012) An Inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology 13(6):583–594

    Article  PubMed  CAS  Google Scholar 

  • Demetrius LA, Simon DK (2013) The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface, 10(82):20130006

    Article  PubMed  Google Scholar 

  • Driver JA, Beiser A, Rhoda A, Kreger BE, Splansky GL, Kurth T, Kiel DP, Lu KP, Seshadri S, Wolf PA (2012) Inverse association between cancer and Alzheimers disease: results from the Framingham Heart Study. BMJ, 344:e1442

    Article  Google Scholar 

  • Fratiglioni L, De Ronchi D, Agüero-Torres H (1999) Worldwide prevalence and incidence of dementia. Drugs Aging 15(5):365–75

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  PubMed  CAS  Google Scholar 

  • Hendrie HC (1998) Epidemiology of dementia and Alzheimer’s disease. Am J Geriatr Psychiatr 6:S3–18

    Article  CAS  Google Scholar 

  • Kruman H (2004) Why do neurons enter the cell cycle? Cell Cycle 3(6):769–73

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri MM, Cato AM, Smith AD (1997) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol 94(1):6–15

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–67

    PubMed  CAS  Google Scholar 

  • Palmer AM (2011) Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharm Sci 32(3):141–147

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62

    Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Plun-Favreau H, Lewis PA, Hardy J, Martins LM, Wood NW (2010) Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS Genet 6(12):e1001257

    Article  Google Scholar 

  • Reddy PH (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice. Hum Mol Genet 13(12):1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI, Morris JC (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74(2):106–112

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2011) Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 17(9):1060–5

    Article  PubMed  CAS  Google Scholar 

  • Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nut Metabol 7(7):7

    Article  Google Scholar 

  • Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18(6):598–608

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow RH (2007) Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging?. Neurobiol Aging 28(10):1465–1480

    Article  PubMed  Google Scholar 

  • Tabarés-Seisdedos R, Rubenstein JL (2013) Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14(4):293–304

    Article  PubMed  Google Scholar 

  • Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med, 2(10). doi:10.1101/csh2012

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–33

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1931) The metabolism of tumors. Academic Press, New York, RR Smith

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochem Biophys Acta 1772(4):494–502

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Perry G, Moreira PI, Aliev G, Cash AD, Hirai K, Smith MA (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer’s disease. J Alzheimer’s Dis 9:147–153

    Google Scholar 

Download references

Acknowledgement

Support from the Max Planck Institute for Molecular Genetics, Berlin, Germany, is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd A. Demetrius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetrius, L.A., Driver, J. Alzheimer’s as a metabolic disease. Biogerontology 14, 641–649 (2013). https://doi.org/10.1007/s10522-013-9479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9479-7

Keywords

Navigation