Skip to main content
Log in

Automated assessment of macroseismic intensity from written sources using the fuzzy sets

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

We apply a computer-aided methodology to assess macroseismic intensity from the descriptions reported by documentary material available for eight Italian earthquakes occurred around the beginning of the instrumental era. The procedure consists of three phases: (i) the identification of significant macroseismic effects on the sources and their archiving in a georeferenced database, (ii) the association between the effects and the degrees of the intensity scale by the comparison with traditional estimates made by macroseismic experts, (iii) the assessment of intensities using a multi-attribute decision-making algorithm based on the Fuzzy Sets logic. This work represents a substantial improvement of our previous efforts as we completely redesigned the three phases of the procedure in the light of the experience of the last 10 years and analyzed six further Italian earthquakes so that our database now includes more than 19,000 encoded effects. Our formalized procedure allows to tracing all of the steps of intensity assessment process so that to identify discrepancies with respect to the expert evaluations that might be possibly due to mistakes or to the incomplete account of the available information. Hence, this approach may be useful for providing a systematic and reproducible intensity assessment as well as for supporting standard man-made assessments. The database of effects we have built could also be employed for testing the internal consistency of the macroseismic scale as well as for designing an improved macroseismic scale, based on consistent statistical criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bakun WH (2006) MMI attenuation and historical earthquakes in the basin and range province of Western North America. Bull Seism Soc Am 96:2206–2220

    Article  Google Scholar 

  • Bakun WH, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87:1502–1521

    Google Scholar 

  • Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci I 17:B141–B164

    Article  Google Scholar 

  • Bonarini A (2003) Sistemi fuzzy. Mondo Digitale II/5:3–14 in Italian

    Google Scholar 

  • Boschi E, Ferrari G, Gasperini P, Guidoboni E, Smriglio G, Valensise G (1995) Catalogo dei Forti Terremoti in Italia dal 461 a.C. al 1980. ING-SGA, Bologna, 973 pp and CD-ROM in Italian

  • Boschi E, Guidoboni E, Ferrari G, Valensise G, Gasperini P (1997) Catalogo dei Forti Terremoti in Italia dal 461 a.C. al 1990. ING-SGA, Bologna, 644 pp and CD-ROM. Version 2.1, o URL: http://www.ingrm.it/CFTI.html in Italian

  • Boschi E, Guidoboni E, Ferrari G, Mariotti D, Valensise G, Gasperini P (eds) (2000) Catalogue of strong Italian earthquakes from 461 B.C. to 1997. Ann Geofis 43:609–868

  • Brazee RJ (1979) Reevalutation of modified mercalli intensity scale for earthquakes using distance as determinant. Bull Seismol Soc Am 69:911–924

    Google Scholar 

  • Camassi R, Stucchi M (1997) NT4.1.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno. GNDT, Milano, 95 pp, also available at http://emidius.itim.mi.cnr.it/NT/home.html in Italian

  • Cancani A (1904) Sur l’emploi d’une double echelle sismique des intensités, empirique et absolute, G. Beitr. Erganzungsband 2:281–283 in French

    Google Scholar 

  • Dengler LA, Dewey JW (1998) An intensity survey of households affected by the Northridge, California, Earthquake of 17 January, 1994. Bull Seismol Soc Am 88:441–462

    Google Scholar 

  • Easton A (1973) One of a kind decisions involving weighted multiple objectives and disparate alternatives. In: Cochrane JL, Zeleny M (eds) Multiple Criteria Decision Making. University of South Carolina Press, Columbia, South Carolina, pp 657–667

    Google Scholar 

  • Ercolani E (2004) DIRECTORY per la georeferenziazione di dati macrosismici. Internal report, INGV- Milano, 14 pp. +CD-Rom (In Italian)

  • Ferrari G, Guidoboni E (2000) Seismic scenarios and assessment of intensity: some criteria for the use of the MCS scale. Ann Geofis 43:707–720

    Google Scholar 

  • Ferrari G, Gasperini P, Guidoboni E (1995) Macroseismic intensity evaluation with the “Fuzzy Sets Logic”. Ann Geofis 38:811–826

    Google Scholar 

  • Galli P, Camassi R (eds) (2009) Rapporto sugli effetti del terremoto aquilano del 6 aprile 2009, DPC-INGV, 12 pp. Available at http://portale.ingv.it/real-time-monitoring/quest/macrodef_sito.pdf in Italian

  • Gasparini C, De Rubeis V, Tertulliani A (1992) A method for the analysis of macroseismic questionnaires. Nat Hazards 5:169–177. doi:10.1007/BF00127004

    Article  Google Scholar 

  • Gasperini P (2001) The attenuation of seismic intensity in Italy: a bilinear shape indicates the dominance of deep phases at distances larger than 45 km. Bull Seism Soc Am 91:826–841. doi:10.1785/0120000066

    Article  Google Scholar 

  • Gasperini P, Bernardini F, Valensise G, Boschi E (1999) Defining seismogenic sources from historical earthquake felt reports. Bull Seismol Soc Am 89:94–110

    Google Scholar 

  • Gasperini P, Vannucci G, Tripone D, Boschi E (2010) The location and sizing of historical earthquakes using the attenuation of macroseismic intensity with distance. Bull Seismol Soc Am 100:2035–2066. doi:10.1785/0120090330

    Article  Google Scholar 

  • Grünthal G (ed) (1993) European macroseismic scale 1992 (up-dated MSK-scale). Conseil de l’Europe. Cahiers du Centre Europèen de Gèodynamique et de Sèismologie, Ed. Grünthal G., 7, Luxembourg

  • Grünthal G (ed) (1998) European Macroseismic Scale 1998 (EMS-98). Conseil de l’Europe. Cahiers du Centre Europèen de Gèodynamique et de Sèismologie, Ed. Grünthal G., 15, Luxembourg

  • Gupta IN, Nuttli OW (1976) Spatial attenuation of intensities for central U.S. earthquakes. Bull Seism Soc Am 66:743–751

    Google Scholar 

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32:163–191

    Google Scholar 

  • Hurwicz L (1951) Optimality criteria for decision making under ignorance. Cowles commission discussion paper, p 370

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications, a state of the art survey. Springer, New York, p 259

    Book  Google Scholar 

  • Medvedev SV, Sponheuer W, Karnik V (1965) Seismic intensity scale, MSK 1964. Academy of Science of the USSR, Soviet Geophysical Committee, Moscow, pp 13

  • Mendoza C, Nishenko S (1989) The North Panama earthquake of 7 September 1982: evidence for active underthrusting. Bull Seism Soc Am 79(4):1264–1269

    Google Scholar 

  • Munoz AV (1988) Seismicity of the Panama block. 2. Spatial attenuation of seismic intensities. Tectonophys 156(3/4):225–237

  • Musson RMW, Cecić I (2012) Intensity and intensity scales. New manual of seismological observatory practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, Potsdam. doi:10.2312/GFZ.NMSOP-2

  • Musson RMW, Jiménez MJ (2008) Macroseismic estimation of earthquake parameters. NERIES project report, Module NA4, Deliverable D3, Edinburgh

  • Musson RMW, Grünthal G, Stucchi M (2010) The comparison of macroseismic intensity scales. J Seismol 14:413–428. doi:10.1007/s10950-009-9172-0

    Article  Google Scholar 

  • Neilson G, Musson RMW, Burton PW (1984) The “London” earthquake of 1580 April 6. Eng Geol 20:113–142

    Article  Google Scholar 

  • Pasolini C, Albarello D, Gasperini P, D’Amico V, Lolli B (2008) The attenuation of seismic intensity in Italy part II: modeling and validation. Bull Seism Soc Am 98:692–708. doi:10.1785/0120070021

    Article  Google Scholar 

  • Pettenati F, Sirovich L (2003) Tests of source-parameter inversion of the U.S. Geological Survey intensities of the Whittier Narrows, 1987 Earthquake. Bull Seismol Soc Am 93:47–60

    Article  Google Scholar 

  • Richter C (1935) An Earthquake Magnitude Scale. Bull Seismol Soc Am 25:1–32

    Google Scholar 

  • Richter C (1958) Elementary seismology. W. H. Freeman and Company, San Francisco and London, p 768

    Google Scholar 

  • Ringdal F, Husebye ES, Sandvin OA, Christoffersson A (1978) Statistical test theory in the analysis of macroseismic questionnaries. Tectonophysics 49:161–170

    Article  Google Scholar 

  • Sbarra P, Tosi P, De Rubeis V (2010) Web-based macroseismic survey in Italy: method validation and results. Nat Hazard 54:563–581. doi:10.1007/s11069-009-9488-7

    Article  Google Scholar 

  • Sieberg A (1912) Über die makroseismische Bestmmung der Erdbenstärke. Ein Beitrag zur seismologische Praxis. G Gerlands Beiträge zur Geophysik 11:227–239 in German

    Google Scholar 

  • Sieberg A (1932) Erdebeben. In: Gutenberg B (ed) Handbuch der Geophysik 4:552–554 in German

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Stover CW, Coffman JL (1993) Seismicity of the United States, 1568–1989 (revised). United States Government Printing Office, Washington, p 424

    Google Scholar 

  • Stucchi M, Camassi R, Rovida A, Locati M, Ercolani E, Meletti C, Migliavacca P, Bernardini F, Azzaro R (2007) DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04, Quaderni di Geofisica 49, 38 pp. Available at http://emidius.mi.ingv.it/DBMI04/

  • Suter M (2001) The historical seismicity of northeastern Sonora and northwestern Chihuahua, Mexico (28–32 degrees N, 106–111 degrees W). J S Am Earth Sci 14:521–532

    Article  Google Scholar 

  • Suter M (2008) Southern California earthquake during the 1775 Anza expedition. Seism Res Lett 79(6):877–878

    Article  Google Scholar 

  • Suter M, Carrillo-Martinez M, Quintero-Legorreta O (1996). Macroseismic study of shallow earthquakes in the Central and Eastern parts of the Trans-Mexican Volcanic Belt, Mexico. Bull Seismol Soc Am 86(6):1952–1963

  • Trifunac MD, Brady AG (1975) On the correlation of seismic intensity scales with peaks of recorded strong ground motion. Bull Seismol Soc Am 65:139–162

    Google Scholar 

  • Vannucci G, Gasperini P, Ferrari G, Guidoboni E (1999) Encoding and computer analysis of macroseismic effects. Phys Chem Earth (A) 24:505–510

    Article  Google Scholar 

  • Vannucci G, Gasperini P, Ferrari G (2000) Reducing the subjectivity of intensity estimates: the fuzzy set approach. Ann Geofis 43:721–727

    Google Scholar 

  • Vogt J, Musson RMW, Stucchi M (1994) Seismological and hydrological criteria for the new European Macroseismic Scale (MSK-92). Nat Hazards 10:1–6

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Dengler LA, Dewey JW (1999) Utilization of the internet for rapid community intensity maps. Seism Res Lett 70:680–697

    Article  Google Scholar 

  • Watanabe S (1978) A generalized fuzzy-set theory. IEEE Trans Syst Man Cybern SMC-8:756–760

  • Watson SR, Weiss JJ, Donnel ML (1979) Fuzzy decision analysis. IEEE Trans Syst Man Cybern SMC-9:1–9

  • Wood HO, Newmann F (1931) Modified Mercalli intensity scale of 1931. Bull Seismol Soc Am 21:277–283

    Google Scholar 

  • Xiang WN, Fabos JG, Mac Dougall EB, Gross M (1987) Evaluation of landscape plan alternatives (the application of a fuzzy group multi-criteria decision making model). research bulletin 717, Massachusetts Agricultural Experiment Station University of Massachusetts at Amherst College of Food and Natural Resources, 70 pp

  • Yager RR (1977) Multiple objective decision-making using fuzzy sets. Int J Man Mach Stud 9:375–382

    Article  Google Scholar 

  • Yager RR (1978) Fuzzy decision-making including unequal objectives. Fuzzy Sets Syst 1:87–95

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zebda A (1984) The investigation of cost variances: a fuzzy set theory approach. Decis Sci 15:44–59

    Article  Google Scholar 

  • Zimmermann HJ (1985) Fuzzy set theory and its applications. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

Download references

Acknowledgments

We thank Roger Musson and an anonymous reviewer for thoughtful comments and suggestions that helped much to improve the paper. The paper has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gasperini.

Electronic supplementary material

Appendices

Appendix 1: English version of the MCS scale (Sieberg 1932)

See Tables 5 and 6.

Table 5 Detailed Mercalli—Sieberg scale for determining the relative earthquake intensities
Table 6 Simplified overview of the most important features of the Mercalli-Sieberg scale

Appendix 2: Formulation of MADM algorithm

The HRW algorithm (Hurwicz 1951) computes the aggregate vector D(A i ) as a linear combination of the minimum and maximum values of exponentially weighted MFs scores using an arbitrary risk coefficient α in the range [0–1]

$$ D_{HRW} (A_{i} ) = \alpha \cdot min_{j} \left[ {\mu_{j} \left( {A_{i} } \right)^{{w_{j} }} } \right] + \left[ {1 - \alpha } \right] \cdot max_{j} \left[ {\mu_{j} \left( {A_{i} } \right)^{{w_{j} }} } \right] $$
(5)

The risk coefficient changes the typology of the approach from “pessimistic” (maximum risk, α = 1) to “optimistic” (minimum risk, α = 0). It is easy to see that the pessimistic approach exactly corresponds to the MXMN algorithm. In our present application we assume an intermediate value α = 0.5.

The SAW algorithm (Hwang and Yoon 1981) computes the D(A i ) scores as the sums of the products of the weights with the MF scores over all the attributes

$$ D_{SAW} (A_{i} ) = \sum\limits_{j = 1}^{m} {w_{j} \mu_{j} \left( {A_{i} } \right)} $$
(6)

The WPM algorithm (Easton 1973) computes the aggregation function D(A i ) as the product of exponentially weighted MFs

$$ D_{WPM} (A_{i} ) = \prod\limits_{j = 1}^{m} {\mu_{j} \left( {A_{i} } \right)}^{{w_{j} }} $$
(7)

The TOPSIS algorithm (Hwang and Yoon 1981) computes the decision matrix D ij as

$$ D_{ij} = w_{j} \frac{{\mu_{j} \left( {A_{i} } \right)}}{{\sqrt {\sum\nolimits_{i = 1}^{m} {\left[ {w_{j} \mu_{j} \left( {A_{i} } \right)} \right]^{2} } } }} $$
(8)

and considers the theoretically ideal and anti-ideal alternatives that would have respectively maximum and minimum scores in the membership function of all of the effects

$$ \begin{aligned} D_{j}^{ + } = \hbox{max} \left( {D_{ij} } \right) \hfill \\ D_{j}^{ - } = \hbox{min} \left( {D_{ij} } \right) \hfill \\ \end{aligned} $$
(9)

The Euclidean distances from both of them is then computed for every (real) alternative as

$$ \begin{aligned} S_{i}^{ + } = \sqrt {\sum\nolimits_{j = 1}^{m} {\left( {D_{ij} - D_{j}^{ + } } \right)^{2} } } \hfill \\ S_{i}^{ - } = \sqrt {\sum\nolimits_{j = 1}^{m} {\left( {D_{ij} - D_{j}^{ - } } \right)^{2} } } \hfill \\ \end{aligned} $$
(10)

The aggregation function D(A i ) is computed as the relative closeness to the ideal alternative

$$ D_{TOPSIS} \left( {A_{i} } \right) = \frac{{S_{i}^{ + } }}{{S_{i}^{ + } + S_{i}^{ - } }} $$
(11)

Appendix 3: Goodness of fit estimators

In order to compare the expert and automated intensities of examined earthquakes, we used:

(1) The root mean square (r.m.s.) deviation between the N corresponding values of expert (I e ) and automated (I f ) intensities

$$ D_{rms} = \sqrt {\frac{1}{N}\sum {\left( {I_{e} - I_{f} } \right)^{2} } } $$
(12)

(2) The mean absolute deviation between the two sets of estimates

$$ D_{abs} = \frac{1}{N}\sum {\left| {I_{e} - I_{f} } \right|} $$
(13)

(3) The Pearson (or product-moment) correlation coefficient, defined as the ratio between the covariance σ ef and the product of the standard deviations σ e and σ f of the two sets of intensities

$$ r_{p} = \frac{{\sigma_{ef} }}{{\sigma_{e} \sigma_{f} }} $$
(14)

(4) The Spearman (1904) non-parametric correlation coefficient, computed by sorting in increasing order all of the N values of the two variables and defining the rank R of each observation as a progressive number from 1 for the lowermost value to N for uppermost value. In presence of ties (observations with identical values and then identical rank), the Spearman coefficient is defined as

$$ r_{s} = \frac{{\left( {N^{3} - N} \right) - 6\sum {\left( {R_{e} - R_{f} } \right)^{2} - \left( {T_{e} - T_{f} } \right)/2} }}{{\sqrt {\left( {N^{3} - N} \right)^{2} - \left( {T_{e} + T_{f} } \right)\left( {N^{3} - N} \right) + T_{e} T_{f} } }} $$
(15)

where T e and T f are the total numbers of ties for the two set of intensities.

(5) The mean difference between expert and automated intensity estimates

$$ d_{mean} = \frac{1}{N}\sum {\left( {I_{e} - I_{f} } \right)} $$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vannucci, G., Tripone, D., Gasperini, P. et al. Automated assessment of macroseismic intensity from written sources using the fuzzy sets. Bull Earthquake Eng 13, 2769–2803 (2015). https://doi.org/10.1007/s10518-015-9759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-015-9759-5

Keywords

Navigation