Skip to main content
Log in

Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun

  • Published:
Astrophysics Aims and scope

Part of the “free” magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday’s law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current \( {j}_{\perp}^2 \)= (0.002− 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Abramenko and S. I. Gopasyuk, Izv. Krymsk. astrofiz. obs. 76, 147 (1987).

    ADS  Google Scholar 

  2. V. I. Abramenko, S. I. Gopasyuk, and M. B. Ogir’, Izv. Krymsk. astrofiz. obs. 78, 151 (1988).

    ADS  Google Scholar 

  3. K. D. Leka, R. C. Canfield, A. N. McClymont, et al., Astrophys. J. 462, 547 (1996).

    Article  ADS  Google Scholar 

  4. T. J. Wang and V. I. Abramenko, Astron. Astrophys. 357, 1056 (2000).

    ADS  Google Scholar 

  5. S. Tsuneta, K. Ichimoto, Y. Katsukawa, et al., Solar Phys. 249, 167 (2008).

    Article  ADS  Google Scholar 

  6. P. H. Scherrer, J. Schou, R. I. Bush, et al., Solar Phys. 275, 207 (2012).

    Article  ADS  Google Scholar 

  7. W. Cao, N. Gorceix, R. Coulter, et al., Astron. Nachr. 331, 636 (2010).

    Article  ADS  Google Scholar 

  8. C. J. Schrijver, M. L. De Rosa, T. R. Metcalf, et al., Solar Phys. 235, 161 (2006).

    Article  ADS  Google Scholar 

  9. C. J. Schrijver, M. L. DeRosa, T. Metcalf, et al., Astrophys. J. 675, 1637 (2008).

    Article  ADS  Google Scholar 

  10. T. R. Metcalf, K. D. Leka, G. Barnes, et al., Solar Phys. 237, 267 (2006).

    Article  ADS  Google Scholar 

  11. T. R. Metcalf, M. L. De Rosa, C. J. Schrijver, et al., Solar Phys. 247, 269 (2008).

    Article  ADS  Google Scholar 

  12. C. J. Schrijver, G. Aulanier, A. M. Title, et al., Astrophys. J. 738, 167 (2011).

    Article  ADS  Google Scholar 

  13. C. J. Schrijver, Astrophys. J. 820, 103 (2016).

    Article  ADS  Google Scholar 

  14. V. I. Abramenko, S. I. Gopasiuk, and M. B. Ogir’, Solar Phys. 134, 287 (1991).

    Article  ADS  Google Scholar 

  15. J. X. Wang, Z. Shi, H. Wang, et al., Astrophys. J. 456, 861 (1996).

    Article  ADS  Google Scholar 

  16. C. J. Schrijver, M. L. De Rosa, A. M. Title, et al., Astrophys. J. 628, 501 (2005).

    Article  ADS  Google Scholar 

  17. S. I. Syrovatskii, Ann. Rev. Astron. Astrophys. 19, 163 (1981).

    Article  ADS  Google Scholar 

  18. B. W. Lites, M. Kubo, and H. Socas-Navarro, Astrophys. J. 672, 1237 (2008).

    Article  ADS  Google Scholar 

  19. V. I. Abramenko, eprint arXiv: 0806.1547 (2008).

  20. V. I. Abramenko, American Geophysical Union, Fall Meeting, abstract No. SH41A-1600 (2008).

  21. V. I. Abramenko, S. I. Gopasyuk, M. B. Ogir’, et al., Izv. Krymsk. astrofiz. obs. 88, 72 (1993).

  22. G. Ruan, Y. Chen, and H. Wang, Astrophys. J. 812, 120 (2015).

    Article  ADS  Google Scholar 

  23. G. Ruan, Y. Chen, S. Wang, et al., Astrophys. J. 784, 165 (2014).

    Article  ADS  Google Scholar 

  24. H. Hagenaar, Astrophys. J. 555, 448 (2001).

    Article  ADS  Google Scholar 

  25. I. E. Tamm, Elements of the Theory of Electricity [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  26. A. M. Zvereva and A. B. Severnyi, Izv. Krymsk. astrofiz. obs. 41-42, 97 (1970).

  27. I. N. Sharykin and A. G. Kosovichev, Astrophys. J. 808, 72 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fursyak.

Additional information

Translated from Astrofizika, Vol. 60, No. 4, pp. 593-603 (November 2017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fursyak, Y.A., Abramenko, V.I. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun. Astrophysics 60, 544–552 (2017). https://doi.org/10.1007/s10511-017-9505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-017-9505-6

Keywords

Navigation