Skip to main content
Log in

Phenomenological modeling of the light curves of algol-type eclipsing binary stars

  • Published:
Astrophysics Aims and scope

We propose a special class of functions for mathematical modeling of periodic signals of a special type with a nonuniform distribution of the arguments. This method has been developed for determining the phenomenological characteristics of light curves required for listing in the “General Catalog of Variable Stars” (GCVS) and other data bases. For eclipsing binary stars with smooth light curves (types EB and EW) a trigonometric polynomial of optimal degree in a complete or symmetric form is recommended. For eclipsing binary systems with relatively narrow minima, approximating the light curves by a class of nonpolynomial spline functions is statistically optimal. A combination of a second order trigonometric polynomial (TP2, which describes “reflection”, ellipsoidal” and “spotting” effects) and localized contributions of the minima (parametrized with respect to depth and profile separately for the primary and secondary minima) is used. This approach is characterized by a statistical accuracy of the smoothing curve that is a factor of ~1.5-2 times better than for a trigonometric polynomial of statistically optimal degree, and by the absence of false “waves” in the light curve associated with the Gibbs effect. Besides finding the width of the minimum, which cannot be determined using a trigonometric polynomial approximation, this method can be used to determine its depth with better accuracy, and to separate the effects of the eclipse and the part outside the eclipse. For multicolor observations, the improved accuracy of the smoothing curve for each filter makes it possible to obtain more accurate plots of the variation in the color index. The efficiency of the proposed method increases as the width of the eclipse becomes smaller. This method supplements the trigonometric polynomial approximation. The method, referred to as the NAV (New Algol Variable) method, is illustrated by applying it to the eclipsing binary systems VSX J022427.8-104034=USNO-B1.0 0793-0023471 and BM UMa. An alternative “double period” model is examined for VSX J022427.8-104034.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Samus, O. V. Durlevich, E. V. Kazarovets, et al., General Catalog of Variable Stars (GCVS database, Version 2012Jan), http://cdsarc.u-strasbg.fr/vizbin/Cat?cat=B%2Fgcvs&

  2. J. Lafler and T. D. Kinman, Astrophys. J. Suppl. Ser. 11, 216 (1965).

    Article  ADS  Google Scholar 

  3. P. N. Kholopov, in: B. V. Nikonov, ed., Methods for Studying Variable Stars [in Russian], Mir, Moscow (1971), p. 307.

    Google Scholar 

  4. I. L. Andronov and L. L. Chinarova, Kinem. Phys. Celest. Bodies 13, No. 6, 55 (1997).

    ADS  Google Scholar 

  5. T. W. Anderson, An Introduction to Multivariate Statistical Analysis [Russian translation], Fizmatgiz, Moscow (1963).

    Google Scholar 

  6. V. Yu. Terebizh, Analysis of Time Series in Astrophysics [in Russian], Fizmatlit, Moscow (1992).

    Google Scholar 

  7. V. Yu. Terebizh, Introduction to the Statistical Theory of Inverse Problems [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  8. P. N. Kholopov, Peremennye zvezdy 21, 465 (1981).

    ADS  Google Scholar 

  9. V. P. Tsesevich (ed.), Eclipsing Binary Stars [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  10. I. L. Andronov, Odessa Astron. Publ. 7, 49 (1994).

    ADS  Google Scholar 

  11. I. L. Andronov, Astron. Soc. Pacif. Conf. Ser. 292, 391 (2003).

    ADS  Google Scholar 

  12. R. Hemming, Digital Filters [Russian translation], Sovetskoe radio, Moscow (1980).

    Google Scholar 

  13. J. Kallrath and E. F. Milone, Eclipsing Binary Stars: Modeling and Analysis, Springer (2012).

  14. R. E. Wilson and E. J. Devinney, Astrophys. J. 166, 605 (1971).

    Article  ADS  Google Scholar 

  15. A. V. Goncharski, A. M. Cherepashchuk, and A. G. Yagoda, Incorrectly Stated Problems in Astrophysics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  16. I. L. Andronov V. I. Marsakova, Astrophysics 49, 370 (2007) (Astrofizika 49, 433 (2007)).

    Article  ADS  Google Scholar 

  17. S. M. Rucinski, Publ. Astron. Soc. Pacif. 105, 1433 (1993).

    Article  ADS  Google Scholar 

  18. V. I. Marsakova and I. L. Andronov, Odessa Astron. Publ. 9, 127 (1996).

    ADS  Google Scholar 

  19. I. L. Andronov, Int. Conf. KOLOS-2010 Abstr. Booklet, Snina, Slovakia, 1 (2010).

  20. Z. Mikulášek, M. Zejda, and J. Janik, Proc. IAU Symp. 282, 391 (2011).

    Article  ADS  Google Scholar 

  21. A. M. Shul’berg, Close Binary Stellar Systems with Spherical Components [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  22. I. L. Andronov, As. Ap. Transact. 2, 341 (1992).

    ADS  Google Scholar 

  23. N. A. Virnina, I. L. Andronov, and M. V. Mogorean, Journal of Physical Studies 15, 2901 (2011).

    ADS  Google Scholar 

  24. A. N. Cox, Allen’s Astrophysical Quantities. 4th ed., The Athlone Press, London (2000).

    Book  Google Scholar 

  25. N. A. Virnina, E. A. Panko, O. G. Sergienko, et al., Odessa Astron. Publ. 23, 147 (2010).

    ADS  Google Scholar 

  26. R. G. Samec, J. D. Gray, B. J. Carrigan, and T. J. Kreidl, Publ. Astron. Soc. Pacif. 107, 136 (1995).

    Article  ADS  Google Scholar 

  27. J. M. Kreiner, S. Rucinski, S. Zola, et al., Astron. Astrophys. 412, 465 (2003).

    Article  ADS  Google Scholar 

  28. I. B. Vavilova, L. K. Pakulyak, A. A. Shlyapnikov, et al., Kinem. Phys. Celest. Bodies, 28, 85 (2012).

    Article  ADS  Google Scholar 

  29. I. L. Andronov, K. A. Antoniuk, A. V. Baklanov, et al., Odessa Astron. Publ. 23, 8 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Andronov.

Additional information

Translated from Astrofizika, Vol. 55, No. 4, pp. 593-609 (November 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andronov, I.L. Phenomenological modeling of the light curves of algol-type eclipsing binary stars. Astrophysics 55, 536–550 (2012). https://doi.org/10.1007/s10511-012-9259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-012-9259-0

Keywords

Navigation