Skip to main content

Advertisement

Log in

The efficacy of Streptococcus agalactiae vaccine preparations, administered to tilapia broodstock, in preventing streptococcosis in their offspring, via transfer of maternal immunity

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study aims to evaluate the efficacy of Streptococcus agalactiae vaccine preparations, administered to tilapia broodstock, in preventing streptococcosis, through specific and non-specific immunity being transferred to the offspring. The study was conducted in two phases. The first was the vaccination of the broodstock using a whole-cell vaccine, an extracellular product (ECP) vaccine, and a combination of the two with a ratio of 1:1. The vaccines were administered to the broodstock 2 and 3 weeks before spawning. The second phase was the challenge test for larvae produced by vaccinated broodstock, and larvae from the unvaccinated control broodstock, through immersion in a suspension of 107 cfu mL−1 pathogenic S. agalactiae for 30 min, at ages 7, 14, 21, and 28 days post-hatching. The parameters evaluated were the broodstock’s blood profile, antibody-lysozyme (in broodstock, eggs, and larvae), and the larvae’s relative percent survival. Treatment with the combined vaccine administered 3 weeks before spawning resulted in the broodstock having significantly better antibody levels, lysozyme activity, and hematology profiles, compared to the other treatments (p < 0.05). In addition, the larvae produced by broodstock subjected to this treatment, when challenged with the pathogenic S. agalactiae at ages 7, 14, 21, and 28 days, had RPS values of 95.24, 83.33, 72.22, and 56.02%, respectively. It was concluded that the administration of the “whole-cell/ECP” combination vaccine preparation to tilapia broodstock in the 3 weeks before spawning can increase specific and non-specific immunity in the broodstock and protect the larvae from S. agalactiae infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amend DF (1981) Potency testing of fish vaccines. Dev Biol Stand 49:447–454

    Google Scholar 

  • Amrullah, Sukenda, Harris E, Alimuddin, Lusiastuti AM (2014) Immunogenicity of the 89 kDa toxin protein from extracellular products of Streptococcus in Oreochromis niloticus. J Fish Aquat Sci 9:176–186

    Article  CAS  Google Scholar 

  • Anderson DP, Siwicki AK (1995) Basic haematology and serology for fish health programs. Paper presented at the 2nd symposium on disease in Asia aquaculture. Aquatic animal health and the environment, Phuket, p 17

    Google Scholar 

  • Biard C, Surai PF, Møller AP (2007) Analysis of pre- and post-hatching maternal effects mediated by carotenoids in the blue tit. J Evol Biol 20:326–333

    Article  PubMed  CAS  Google Scholar 

  • Blaxhall PC, Daisley KW (1973) Reutine haemotologycal methods for use with fish blood. J Fish Biol 5:577-581

    Google Scholar 

  • Blount JD, Surai PF, Nager RG, Houston DC, Møller AP, Trewby ML, Kennedy MW (2002) Carotenoids and egg quality in the lesser black-backed gull Larus fuscus: a supplemental feeding study of maternal effects. Proc R Soc B 269:29–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowden TJ, Thompson KD, Morgan AL, Gratacap RML, Nikoskelainen S (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22:695–706

    Article  PubMed  Google Scholar 

  • Cecchini S, Terova G, Caricato G, Saroglia M (2000) Lysosome activity in embryos and larvae of sea bass Dicentrarchus labrax L., spawned by broodstocks fed with vitamin C enriched diets. Bull Eur Assoc Fish Pathol 20:120–124

    Google Scholar 

  • Choi JH, Park PJ, Kim SK (2002) Purification and characterization of a trypsin inhibitor from the egg of skipjack tuna Katsuwonus pelamis. Fish Sci 68:1367–1373

    Article  CAS  Google Scholar 

  • Dwinanti SH, Sukenda, Yuhana M, Lusiastuti AM (2014) Toxicity and immunogenicity of non-hemolytic Streptococcus agalactiae extracellular products to tilapia Oreochromis niloticus. Jurnal Akuakultur Rawa Indonesia 2:105–116

    Google Scholar 

  • Ellis AE (1990) Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB (eds) Techniques in fish immunology. SOS Publications, Fair Haven

    Google Scholar 

  • Ellsaesser DF, Clem LW (1986) Haematological and immunological changes in Channel catfish stressed by handling and transport. J Fish Biol 28:511–521

    Article  Google Scholar 

  • Gomes S, Afonso A, Gartner F (2006) Fish vaccination against infection by streptococcal species and the particular case of lactococcosis. Revista Portuguesa De Ciencias Veterinarias 101:25–35

    Google Scholar 

  • Grindstaff JL, Brodie ED, Ketterson ED (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transfer. Proc R Soc B 270:2309–2319

    Article  PubMed  PubMed Central  Google Scholar 

  • Grindstaff JL (2008) Maternal antibodies reduce costs of an immune response during development. J Exp Biol 211:654–660

    Article  PubMed  CAS  Google Scholar 

  • Hanif A, Bakopoulos V, Dimitriadis GJ (2004) Maternal transfer of humoral specific and non-specific immune parameters to sea bream Sparus aurata larvae. Fish Shellfish Immunol 17:411–435

    Article  PubMed  CAS  Google Scholar 

  • Hanif A, Bakopoulos V, Dimitriadis GJ (2005) The effect of sea bream Sparus aurata broodstock and larval vaccination on the susceptibility by Photobacterium damsela subsp. piscisida and on the humoral immune parameters. Fish Shellfish Immunol 19:345–361

    Article  PubMed  CAS  Google Scholar 

  • Hardi EH, Sukenda, Harris E, Lusiastuti AM (2013) Potential vaccine candidate of Streptococcus agalactiae for prevent strepcococosis on Nila tilapia (Oreochromis niloticus). Indonesia Medicus Veterinus 14:408–416

    Google Scholar 

  • Harris J, Bird DJ (2000) Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77:163–176

    Article  PubMed  CAS  Google Scholar 

  • Holland MCH, Lambris JD (2002) The complement system in teleosts. Fish Shellfish Immunol 12:399–420

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology (ninth edition). Williams & Wilkins, Baltimore, pp 532–558

    Google Scholar 

  • Huttenhuis HBT, Grou CPO, Taverne-Thiele AJ, Taverne N, Rombout JH (2006) Carp (Cyprinus carpio L.) innate immune factors are present before hatching. Fish Shellfish Immunol 20:586–596

    Article  PubMed  CAS  Google Scholar 

  • Jantrakajorn S, Maisak H, Wongtavatchai J (2014) Comprehensive investigation of streptococcosis outbreaks in cultured Nile tilapia, Oreochromis niloticus, and red tilapia, Oreochromis sp., of Thailand. J World Aquacult Soc 45:392–402

    Article  CAS  Google Scholar 

  • Lusiastuti AM, Handayani ES, Taukhid, Sukenda, Harris E (2010) Vaksin Streptococcus agalactiae: Kajian perbandingan metode preparasi sel utuh (whole cell) tipe non hemolitik untuk pencegahan streptococcosis pada ikan nila Oreochromis niloticus. Proceeding “Simposium Nasional Bioteknologi Akuakultur III”, Department of Aquaculture, Bogor Agricultural University, Bogor, p 44-52.

  • Magnadottir B, Lange S, Gudmundsdottir S, Bogwald J, Dalm RA (2005) Ontogeny of humoral immune parameters in fish. Fish Shellfish Immunol 19:429–439

    Article  PubMed  CAS  Google Scholar 

  • Marsh MB, Rice CD (2010) Development, characterization, and technical applications of a fish lysozyme-specific monoclonal antibody (mAb M24-2). Comp Immunol Microbiol Infect Dis 33:15–23

    Article  Google Scholar 

  • Mingming H, FuHong D, Zhen M, Jilin L (2014) The effect of vaccinating turbot broodstocks on the maternal immunity transfer to offspring immunity. Fish Shellfish Immunol 39:118–124

    Article  PubMed  CAS  Google Scholar 

  • Mulero I, García-Ayala A, Meseguer J, Mulero V (2007) Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish: a minireview. Aquaculture 268:244–250

    Article  CAS  Google Scholar 

  • Ndiaye P, Forgue J, Lamothe V, Cauty C, Tacon P, Lafon P, Davail B, Fostier A, Le Menn F, Núñez J (2006) Tilapia Oreochromis niloticus vitellogenins: development of homologous and heterologous ELISAs and analysis of vitellogenin pathway through the ovarian follicle. J Exp Zool P A305:576–593

    Article  CAS  Google Scholar 

  • Nisaa K, Sukenda JMZ, Lusiastuti AM, Nuryati S (2016) Resistance of tilapia Oreochrimis niloticus fry vaccinated at different gonadal developmental stages toward Streptococcus agalactiae infection. Jurnal Veteriner 3:355–364

    Article  Google Scholar 

  • Nisaa K, Sukenda ZM, Nuryati S, Lusiastuti AM (2017) Fry tilapia Oreochromis niloticus antibody improvement against Streptococcus agalactiae through broodstock vaccination. Pakistan. J Biotechnol 14:9–16

    Google Scholar 

  • Nur I, Sukenda, Dana D (2004) Streptococcus iniae resistance of fry from vaccinated mother of gift tilapia (Oreochromis niloticus Linn.) to artificial infection of Streptococcus iniae. Jurnal Akuakultur Indonesia 3:37–43

    Article  Google Scholar 

  • Ortuno J, Esteban MA, Messeguer J (2001) Effects of short-term crowding stress on gilthead seabream Sparus aurata L. innate immune response. Fish Shellfish Immunol 11:187–197

    Article  PubMed  CAS  Google Scholar 

  • Pasnik DJ, Evans JJ, Panangala VS, Klesius PH, Shelby RA, Shoemaker CA (2005) Antigenicity of Streptococcus agalactiae extracellular products and vaccine efficacy. J Fish Dis 28:205–212

    Article  PubMed  CAS  Google Scholar 

  • Picchietti S, Taddei AR, Scapigliati G, Buonocore F, Fausto AM, Romano N (2004) Immunoglobulin protein and gene transcripts in ovarian follicles throughout oogenesis in the teleost Dicentrachus labrax. Cell Tissue Res 315:259–270

    Article  PubMed  CAS  Google Scholar 

  • Rubolini D, Romano M, Bonisoli AA, Saino N (2006) Early maternal, genetic and environmental components of antioxidant protection, morphology and immunity of yellow-legged gull Larus michahellis chicks. J Evol Biol 19:1571–1584

    Article  PubMed  CAS  Google Scholar 

  • Saino N, Dall’ara P, Martinelli R, Møller AP (2002) Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow. J Evol Biol 15:735–743

    Article  CAS  Google Scholar 

  • Sheehan B, Labrie L, Lee YS, Wong FS, Chan J, Komar C, Wendover N, Grisez L (2009) Streptococcal diseases in farmed tilapia. Aquacult Asia Pac 5:26–29

    Google Scholar 

  • Shelby RA, Shoemaker CA, Evans JJ, Klesius PH (2001) Development of an indirect ELISA to detect humoral response to Streptococcus iniae infection of Nile tilapia, Oreochromis niloticus. J Appl Aquac 11:35–44

    Article  Google Scholar 

  • SNI 6139:2009 (Indonesian National Standard) (2009) Production of the Nile tilapia broodstock (Oreochromis niloticus Bleeker) main staple class. National Standardization Agency, Indonesia

    Google Scholar 

  • Sugiani D, Sukenda, Harris E, Lusiastuti AM (2013) Vaccination of tilapia (O. niloticus) using monovalent and bivalent vaccines for motile aeromonads septicemia and streptococcosis disease. Jurnal Riset Akuakultur 8:229–239

    Article  Google Scholar 

  • Sukenda, Febriansyah TR, Nuryati S (2014) Efficacy of whole cells vaccine Streptococcus agalactiae in tilapia Oreochromis niloticus by bath immersion method. Jurnal Akuakultur Indonesia 13:83–93

    Article  Google Scholar 

  • Sukenda, Pratiwi KA, Rahman, Hidayatullah D (2017) Efficacy of whole cell vaccine Aeromonas hydrophila on catfish broodstock and it’s offspring resistance againt motile aeromonad septicemia (MAS). Jurnal Akuakultur Indonesia 16:92–100

    Article  Google Scholar 

  • Swain P, Dash S, Bal J, Routray P, Sahoo PK, Sahoo SK, Saurabh S, Gupta SD, Meher PK (2006) Passive transfer of maternal antibodies and their existence in eggs, larvae and fry of Indian major carp, Labeo rohita (Ham.) Fish Shellfish Immunol 20:519–527

    Article  PubMed  CAS  Google Scholar 

  • Swain P, Dash S, Sahoo PK, Routray P, Sahoo SK, Gupta SD (2007) Non specific immune parameters of brood Indian major carp, Labeo rohita and their seasonal variations. Fish Shellfish Immunol 22:38–43

    Article  PubMed  CAS  Google Scholar 

  • Swain P, Nayak SK (2009) Role of maternally derived immunity in fish. Fish Shellfish Immunol 27:89–99

    Article  PubMed  CAS  Google Scholar 

  • Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Immunologia 22:277–286

    Google Scholar 

  • Valenzuela AE, Silva VM, Klempau AE (2007) Some changes in the haematological parameters of rainbow trout Oncorhynchus mykiss exposed to three artificial photoperiod regimes. Fish Physiol Biochem 33:35–48

    Article  CAS  Google Scholar 

  • Wang ZP, Zhang SC (2010) The role of lysozyme and complement in the antibacterial activity of zebrafish Danio rerio egg cytosol. Fish Shellfish Immunol 29:773–777

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Wang Y, Ma J, Ding YC, Zhang SC (2011) Phosvitin plays a critical role in the immunity of zebrafish embryos via acting as a pattern recognition receptor and an antimicrobial effector. J Biol Chem 286:22653–22664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Ji D, Shao J, Zhang S (2012) Maternal transfer and protective role of antibodies in zebrafish Danio rerio. Mol Immunol 51:332–336

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Yang Z, Zang M, Liu Y, Lu C (2013) Identification of Omp38 by immunoproteomic analysis and evaluation as a potential vaccine antigen against Aeromonas hydrophila in Chinese breams. Fish Shellfish Immunol 34:74-81

  • Wang R, Li L, Huang Y, Luo F, Liang W, Gan X, Huang T, Lei A, Chen M, Chen L (2015) Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain ym001 compared to the parental pathogenic strain hn016. BMC Genomics 16:897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wedemeyer IWT, Yasutake WT (1977) Clinical methods for the assessment of the effect on environmental stress on fish health. J Fish Wildlife Serv 89:1–17

    Google Scholar 

  • Zapata A, Díez B, Cejalvo T, Gutiérrez-de Frías C, Cortés A (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol 20:126–136

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Wang Z, Wang H (2013) Maternal immunity in fish. Dev Comp Immunol 39:72–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Directorate General of Higher Education who has helped fund this study and the Aquatic Organism Health Laboratory in the Department of Aquaculture, Faculty of Fisheries and Marine Science, Bogor Agricultural University, which have helped and supported us in completing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukenda Sukenda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukenda, S., Rahman, R., Nisaa, K. et al. The efficacy of Streptococcus agalactiae vaccine preparations, administered to tilapia broodstock, in preventing streptococcosis in their offspring, via transfer of maternal immunity. Aquacult Int 26, 785–798 (2018). https://doi.org/10.1007/s10499-018-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0252-4

Keywords

Navigation