Skip to main content

Advertisement

Log in

Gamma secretase inhibitors enhance vincristine-induced apoptosis in T-ALL in a NOTCH-independent manner

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Activating mutations in the NOTCH1 gene are found in over 50 % of T-ALL cases. Since Notch signaling contributes to the leukemia cell survival and growth, targeting Notch signaling using γ-secretase inhibitors (GSI) has been proposed as a molecularly targeted therapy for the treatment of T-ALL. However, not all T-ALL with NOTCH1 activating mutations respond to GSI treatment. We examined whether GSI could enhance the cytotoxic effect of anti-leukemic agents in the GSI-resistant T-ALL cells although GSI does not have anti-tumor effect as a single agent. GSI significantly increased cell death induced by Vincristine (VCR) but not other anti-leukemic drugs (Methotrexate, Asparaginase, and Cytarabine). The GSI effect in enhancing VCR efficacy was not the result of inhibition of Notch signaling. GSI augmented VCR-induced mitotic arrest, followed by apoptosis. GSI accelerated VCR-triggered loss of mitochondrial membrane potential and caspase-mediated apoptosis. Our finding suggests that GSI has other functions besides inhibiting Notch signaling in T-ALL and incorporating GSI into the conventional regimen containing VCR may offer therapeutic advantage by potentiating VCR treatment in leukemia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

T-ALL:

T cell acute lymphoblastic leukemia

GSI:

γ-Secretase inhibitor

PS:

Presenilin

ICN1:

Intracellular domains of human Notch1

DN-MAML1:

Dominant negative mastermind-like 1

VCR:

Vincristine

Ara C:

Cytarabine

MTX:

Methotrexate

ASP:

Asparaginase

Jurkat:

Jurkat-E6

CEM:

CCRF-CEM

P12:

P12-Ichikawa

KOPT:

KOPT-K1

HSB-2:

CCRF-HSB-2

References

  1. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178

    Article  PubMed  CAS  Google Scholar 

  2. Kraszewska MD, Dawidowska M, Szczepanski T, Witt M (2012) T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 156:303–315

    Article  PubMed  CAS  Google Scholar 

  3. Van Vlierberghe P, Ferrando A (2012) The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 122:3398–3406

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6:347–359

    Article  PubMed  CAS  Google Scholar 

  5. Koch U, Radtke F (2011) Notch in T-ALL: new players in a complex disease. Trends Immunol 32:434–442

    Article  PubMed  CAS  Google Scholar 

  6. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  PubMed  CAS  Google Scholar 

  7. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B et al (1996) Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183:2283–2291

    Article  PubMed  CAS  Google Scholar 

  8. Chen J, Jette C, Kanki JP, Aster JC, Look AT et al (2007) NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21:462–471

    Article  PubMed  Google Scholar 

  9. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD et al (2003) Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23:655–664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ (2007) Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 110:278–286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D et al (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204:1813–1824

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Keersmaecker K, Lahortiga I, Mentens N, Folens C, Van Neste L et al (2008) In vitro validation of gamma-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica 93:533–542

    Article  PubMed  Google Scholar 

  13. Samon JB, Castillo-Martin M, Hadler M, Ambesi-Impiobato A, Paietta E et al (2012) Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther 11:1565–1575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Masuda S, Kumano K, Suzuki T, Tomita T, Iwatsubo T et al (2009) Dual antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic leukemia xenograft model. Cancer Sci 100:2444–2450

    Article  PubMed  CAS  Google Scholar 

  15. Tammam J, Ware C, Efferson C, O’Neil J, Rao S et al (2009) Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol 158:1183–1195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wei P, Walls M, Qiu M, Ding R, Denlinger RH et al (2010) Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 9:1618–1628

    Article  PubMed  CAS  Google Scholar 

  17. Rao S, O’Neil J, Liberator C, Hardwick J, Dai X et al (2009) Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res 69:3060–3068

    Article  PubMed  CAS  Google Scholar 

  18. Cullion K, Draheim K, Hermance N, Tammam J, Sharma V et al (2009) Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 113:6172–6181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG et al (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46:364–370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E et al (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15:50–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13:1203–1210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  23. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  PubMed  CAS  Google Scholar 

  24. Placanica L, Chien JW, Li YM (2010) Characterization of an atypical gamma-secretase complex from hematopoietic origin. Biochemistry 49:2796–2804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H et al (2004) Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104:1696–1702

    Article  PubMed  CAS  Google Scholar 

  26. Lewis HD, Leveridge M, Strack PR, Haldon CD, O’Neil J et al (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14:209–219

    Article  PubMed  CAS  Google Scholar 

  27. Holleman A, den Boer ML, Kazemier KM, Janka-Schaub GE, Pieters R (2003) Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia. Blood 102:4541–4546

    Article  PubMed  CAS  Google Scholar 

  28. Akiyoshi T, Nakamura M, Yanai K, Nagai S, Wada J et al (2008) Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 134:131–144

    Article  PubMed  CAS  Google Scholar 

  29. Tasaka T, Akiyoshi T, Yamaguchi K, Tanaka M, Onishi H et al (2010) Gamma-secretase complexes regulate the responses of human pancreatic ductal adenocarcinoma cells to taxanes. Anticancer Res 30:4999–5010

    PubMed  CAS  Google Scholar 

  30. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA et al (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM et al (2008) Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging 29:319–328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Lock RB, Liem N, Farnsworth ML, Milross CG, Xue C et al (2002) The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 99:4100–4108

    Article  PubMed  CAS  Google Scholar 

  33. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M et al (2004) Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103:3905–3914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Louisiana Cancer Research Consortium FACS core for flow cytometry analysis (P20GM103518). This work was supported by NIH Grants P20GM103501 to SOY and R01CA121039 to YSC.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ok Yoon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, SO., Zapata, M.C., Singh, A. et al. Gamma secretase inhibitors enhance vincristine-induced apoptosis in T-ALL in a NOTCH-independent manner. Apoptosis 19, 1616–1626 (2014). https://doi.org/10.1007/s10495-014-1029-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1029-5

Keywords

Navigation