Skip to main content
Log in

Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bcl-2:

B cell leukemia/lymphoma-2

Caspases:

cysteinyl-directed aspartate-specific proteases

Endo G:

endonuclease G

TRADD:

TNFR-associated death domain protein

FADD:

Fas-associated death domain protein

Daxx:

death-associated protein 6

RIP:

receptor interacting protein

RAIDD:

RIP-associated Protein with a Death Domain

FLIP:

FLICE inhibitory protein

cIAP:

cellular inhibitor of apoptosis protein-1

SMC:

smooth muscle cell

References

  1. Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14:469–475

    PubMed  CAS  Google Scholar 

  2. Morissette MR, Rosenzweig A (2005) Targeting survival signaling in heart failure. Curr Opin Pharmacol 5:165–170

    PubMed  CAS  Google Scholar 

  3. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704

    PubMed  CAS  Google Scholar 

  4. Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589

    PubMed  CAS  Google Scholar 

  5. Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 2004; 114:23–27

    PubMed  CAS  Google Scholar 

  6. Heiser D, Labi V, Erlacher M, Villunger A. The Bcl-2 protein family and its role in the development of neoplastic disease. Exp Gerontol 39:1125–1135

    PubMed  CAS  Google Scholar 

  7. Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700s

    PubMed  CAS  Google Scholar 

  8. Bakhshi A, Wright JJ, Graninger W, et al (1987) Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396–2400

    PubMed  CAS  Google Scholar 

  9. Ottilie S, Diaz JL, Horne W, et al (1997) Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant BCL-2 and BCL-XL proteins. J Biol Chem 272:30866–30872

    PubMed  CAS  Google Scholar 

  10. Hsu SY, Kaipia A, McGee E, et al (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94:12401–12406

    PubMed  CAS  Google Scholar 

  11. Rashmi R, Kumar S, Karunagaran D (2005) Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downregulation of Bcl-XL. Carcinogenesis 26:713–723

    PubMed  CAS  Google Scholar 

  12. Shibue T, Takeda K, Oda E, et al (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17:2233–2238

    PubMed  CAS  Google Scholar 

  13. Wang K, Yin XM, Chao DT, et al (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869

    PubMed  CAS  Google Scholar 

  14. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    PubMed  CAS  Google Scholar 

  15. Lee T, Chau L (2001) Fas/Fas ligand-mediated death pathway is involved in oxLDL-induced apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 280:C709–C718

    PubMed  CAS  Google Scholar 

  16. Vicca S, Massy ZA, Hennequin C, et al (2003) Apoptotic pathways involved in U937 cells exposed to LDL oxidized by hypochlorous acid. Free Radic Biol Med 35:603–615

    PubMed  CAS  Google Scholar 

  17. Norata GD, Tonti L, Roma P, Catapano AL (2002) Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: possible role of oxidised LDL. Nutr Metab Cardiovasc Dis 12:297–305

    PubMed  CAS  Google Scholar 

  18. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    PubMed  CAS  Google Scholar 

  19. Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647

    PubMed  CAS  Google Scholar 

  20. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  21. Sun XM, MacFarlane M, Zhuang J, et al (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060

    PubMed  CAS  Google Scholar 

  22. Sprick MR, Weigand MA, Rieser E, et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    PubMed  CAS  Google Scholar 

  23. Bodmer JL, Holler N, Reynard S, et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–243

    PubMed  CAS  Google Scholar 

  24. Soderstrom TS, Poukkula M, Holmstrom TH, et al (2002) Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. J Immunol 169:2851–2860

    PubMed  CAS  Google Scholar 

  25. Scaffidi C, Fulda S, Srinivasan A, et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    PubMed  CAS  Google Scholar 

  26. Ochs K, Kaina B (2000) Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 60:5815–5824

    PubMed  CAS  Google Scholar 

  27. Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochromecrelease. Cell Death Differ 7:556–565

    PubMed  CAS  Google Scholar 

  28. de Moissac D, Gurevich RM, Zheng H, et al (2000) Caspase activation and mitochondrial cytochromecrelease during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32:53–63

    PubMed  CAS  Google Scholar 

  29. Neame SJ, Rubin LL, Philpott KL (1998) Blocking cytochromecactivity within intact neurons inhibits apoptosis. J Cell Biol 142:1583–1593

    PubMed  CAS  Google Scholar 

  30. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochromecfrom mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    PubMed  CAS  Google Scholar 

  31. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636

    PubMed  CAS  Google Scholar 

  32. van Loo G, van Gurp M, Depuydt B, et al (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26

    PubMed  CAS  Google Scholar 

  33. van Loo G, Saelens X, van Gurp M, et al (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042

    PubMed  CAS  Google Scholar 

  34. Zhang W, Li D, Mehta JL (2004) Role of AIF in human coronary artery endothelial cell apoptosis. Am J Physiol Heart Circ Physiol 286:H354–H358

    PubMed  CAS  Google Scholar 

  35. Sakurai K, Katoh M, Fujimoto Y (2001) Alloxan-induced mitochondrial permeability transition triggered by calcium, thiol oxidation, and matrix ATP. J Biol Chem 276:26942–26946

    PubMed  CAS  Google Scholar 

  36. Gottlieb RA (2000) Mitochondria: execution central. FEBS Lett 482:6–12

    PubMed  CAS  Google Scholar 

  37. Petronilli V, Miotto G, Canton M, et al (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734

    Article  PubMed  CAS  Google Scholar 

  38. Petronilli V, Penzo D, Scorrano L, et al (2001) The mitochondrial permeability transition, release of cytochromecand cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034

    PubMed  CAS  Google Scholar 

  39. Marzo I, Brenner C, Zamzami N, et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271

    PubMed  CAS  Google Scholar 

  40. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochromecby the mitochondrial channel VDAC. Nature 399:483–487

    PubMed  CAS  Google Scholar 

  41. Marzo I, Brenner C, Zamzami N, et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    PubMed  CAS  Google Scholar 

  42. Belzacq AS, Vieira HL, Verrier F, et al (2003) Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res 63:541–546

    PubMed  CAS  Google Scholar 

  43. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, et al (1999) Bax-induced caspase activation and apoptosis via cytochromecrelease from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233

    PubMed  CAS  Google Scholar 

  44. Narita M, Shimizu S, Ito T, et al (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochromecrelease in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    PubMed  CAS  Google Scholar 

  45. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623

    PubMed  CAS  Google Scholar 

  46. Nouraini S, Six E, Matsuyama S, et al (2000) The putative pore-forming domain of Bax regulates mitochondrial localization and interaction with Bcl-X(L). Mol Cell Biol 20:1604–1615

    PubMed  CAS  Google Scholar 

  47. Mikhailov V, Mikhailova M, Degenhardt K, et al (2003) Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochromecrelease. J Biol Chem 278:5367–5376

    PubMed  CAS  Google Scholar 

  48. Mikhailov V, Mikhailova M, Pulkrabek DJ, et al (2001) Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276:18361–18374

    PubMed  CAS  Google Scholar 

  49. Schendel SL, Xie Z, Montal MO, et al (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94:5113–5118

    PubMed  CAS  Google Scholar 

  50. Nechushtan A, Smith CL, Hsu YT, Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18:2330–2341

    PubMed  CAS  Google Scholar 

  51. Schinzel A, Kaufmann T, Bornerc(2004) Bcl-2 family members: integrators of survival and death signals in physiology and pathology. Biochim Biophys Acta 1644:95–105

    PubMed  CAS  Google Scholar 

  52. Nguyen M, Millar DG, Yong VW, et al (1993) Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem 268:25265–25268

    PubMed  CAS  Google Scholar 

  53. del Mar Martinez-Senac M, Corbalan-Garcia S, Gomez-Fernandez JC (2000) Study of the secondary structure of the C-terminal domain of the antiapoptotic protein bcl-2 and its interaction with model membranes. Biochemistry 39:7744–7752

    PubMed  CAS  Google Scholar 

  54. Aritomi M, Kunishima N, Inohara N, et al (1997) Crystal structure of rat Bcl-xL. Implications for the function of the Bcl-2 protein family. J Biol Chem 272:27886–27892

    PubMed  CAS  Google Scholar 

  55. Muchmore SW, Sattler M, Liang H, et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    PubMed  CAS  Google Scholar 

  56. Huang Q, Petros AM, Virgin HW, et al (2002) Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci USA 99:3428–3433

    PubMed  CAS  Google Scholar 

  57. Sattler M, Liang H, Nettesheim D, et al (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    PubMed  CAS  Google Scholar 

  58. Korsmeyer SJ, Gross A, Harada H, et al (1999) Death and survival signals determine active/inactive conformations of pro-apoptotic BAX, BAD, and BID molecules. Cold Spring Harb Symp Quant Biol 64:343–350

    PubMed  CAS  Google Scholar 

  59. Gilmore AP, Metcalfe AD, Romer LH, Streuli CH (2000) Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 149:431–446

    PubMed  CAS  Google Scholar 

  60. Desagher S, Osen-Sand A, Nichols A, et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochromecrelease during apoptosis. J Cell Biol 144:891–901

    PubMed  CAS  Google Scholar 

  61. He H, Lam M, McCormick TS, Distelhorst CW (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138:1219–1228

    PubMed  CAS  Google Scholar 

  62. Bruce-Keller AJ, Begley JG, Fu W, et al (1998) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 70:31–39

    Article  PubMed  CAS  Google Scholar 

  63. Bogdanov MB, Ferrante RJ, Mueller G, et al (1999) Oxidative stress is attenuated in mice overexpressing BCL-2. Neurosci Lett 262:33–36

    PubMed  CAS  Google Scholar 

  64. Yang J, Liu X, Bhalla K, et al (1997) Prevention of apoptosis by Bcl-2: release of cytochromecfrom mitochondria blocked. Science 275:1129–1132

    PubMed  CAS  Google Scholar 

  65. Mirkovic N, Voehringer DW, Story MD, et al (1997) Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 15:1461–1470

    PubMed  CAS  Google Scholar 

  66. Decaudin D, Geley S, Hirsch T, et al (1997) Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 57:62–67

    PubMed  CAS  Google Scholar 

  67. Rokhlin OW, Guseva N, Tagiyev A, et al (2001) Bcl-2 oncoprotein protects the human prostatic carcinoma cell line PC3 from TRAIL-mediated apoptosis. Oncogene 20:2836–2843

    PubMed  CAS  Google Scholar 

  68. Sinicrope FA, Penington RC, Tang XM (2004) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human colon cancer cells. Clin Cancer Res 10:8284–8292

    PubMed  CAS  Google Scholar 

  69. Memon SA, Moreno MB, Petrak D, Zacharchuk CM (1995) Bcl-2 blocks glucocorticoid- but not Fas- or activation-induced apoptosis in a T cell hybridoma. J Immunol 155:4644–4652

    PubMed  CAS  Google Scholar 

  70. Gazitt Y, Shaughnessy P, Montgomery W (1999) Apoptosis-induced by TRAIL AND TNF-alpha in human multiple myeloma cells is not blocked by BCL-2. Cytokine 11:1010–1019

    PubMed  CAS  Google Scholar 

  71. Keogh SA, Walczak H, Bouchier-Hayes L, Martin SJ (2000) Failure of Bcl-2 to block cytochromecredistribution during TRAIL-induced apoptosis. FEBS Lett 471:93–98

    PubMed  CAS  Google Scholar 

  72. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    PubMed  CAS  Google Scholar 

  73. Motoyama N, Wang F, Roth KA, et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510

    PubMed  CAS  Google Scholar 

  74. Conus S, Rosse T, Bornerc(2000) Failure of Bcl-2 family members to interact with Apaf-1 in normal and apoptotic cells. Cell Death Differ 7:947–954

    PubMed  CAS  Google Scholar 

  75. Murphy KM, Streips UN, Lock RB (2000) Bcl-2 inhibits a Fas-induced conformational change in the Bax N terminus and Bax mitochondrial translocation. J Biol Chem 275:17225–17228

    PubMed  CAS  Google Scholar 

  76. He L, Perkins GA, Poblenz AT, et al (2003) Bcl-xL overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice. Proc Natl Acad Sci USA 100:1022–1027

    PubMed  CAS  Google Scholar 

  77. Ruffolo SC, Shore GC (2003) BCL-2 selectively interacts with the BID-induced open conformer of BAK, inhibiting BAK auto-oligomerization. J Biol Chem 278:25039–25045

    PubMed  CAS  Google Scholar 

  78. Willis SN, Chen L, Dewson G, et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    PubMed  CAS  Google Scholar 

  79. Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272:11671–11673

    PubMed  CAS  Google Scholar 

  80. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    PubMed  CAS  Google Scholar 

  81. Basu A, Haldar S (2003) Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett 538:41–47

    PubMed  CAS  Google Scholar 

  82. Fadeel B, Hassan Z, Hellstrom-Lindberg E, et al (1999) Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia 13:719–728

    PubMed  CAS  Google Scholar 

  83. Liang Y, Nylander KD, Yan C, Schor NF (2002) Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Mol Pharmacol 61:142–149

    PubMed  Google Scholar 

  84. Cheng EH, Kirsch DG, Clem RJ, et al (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968

    PubMed  CAS  Google Scholar 

  85. Kirsch DG, Doseff A, Chau BN, et al (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155–21161

    PubMed  CAS  Google Scholar 

  86. Basanez G, Zhang J, Chau BN, et al (2001) Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 276:31083–31091

    PubMed  CAS  Google Scholar 

  87. Nechushtan A, Smith CL, Hsu YT, Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18:2330–2341

    PubMed  CAS  Google Scholar 

  88. Griffiths GJ, Dubrez L, Morgan CP, et al (1999) Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144:903–914

    PubMed  CAS  Google Scholar 

  89. Mandic A, Viktorsson K, Strandberg L, et al (2002) Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22:3003–3013

    PubMed  CAS  Google Scholar 

  90. Wei MC, Zong WX, Cheng EH, et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed  CAS  Google Scholar 

  91. Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33–45

    PubMed  CAS  Google Scholar 

  92. Han J, Goldstein LA, Gastman BR, et al (2004) Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 18:1671–1680

    PubMed  CAS  Google Scholar 

  93. Ruiz-Vela A, Opferman JT, Cheng EH, Korsmeyer SJ (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6:379–385

    PubMed  CAS  Google Scholar 

  94. Wood DE, Thomas A, Devi LA, et al (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17:1069–1078

    PubMed  CAS  Google Scholar 

  95. Cao X, Deng X, May WS (2003) Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 102:2605–2614

    PubMed  CAS  Google Scholar 

  96. Letai A (2003) BH3 domains as BCL-2 inhibitors: prototype cancer therapeutics. Expert Opin Biol Ther 3:293–304

    PubMed  CAS  Google Scholar 

  97. Datta SR, Dudek H, Tao X, et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    PubMed  CAS  Google Scholar 

  98. Datta SR, Katsov A, Hu L, et al (2000) 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6:41–51

    PubMed  CAS  Google Scholar 

  99. Konishi Y, Lehtinen M, Donovan N, Bonni A (2002) Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell 9:1005–1016

    PubMed  CAS  Google Scholar 

  100. Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949

    PubMed  CAS  Google Scholar 

  101. Dramsi S, Scheid MP, Maiti A, et al (2002) Identification of a novel phosphorylation site, Ser-170, as a regulator of bad pro-apoptotic activity. J Biol Chem 277:6399–6405

    PubMed  CAS  Google Scholar 

  102. Putcha GV, Le S, Frank S, et al (2003) JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914

    PubMed  CAS  Google Scholar 

  103. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    PubMed  CAS  Google Scholar 

  104. Oda E, Ohki R, Murasawa H, et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    PubMed  CAS  Google Scholar 

  105. Yu J, Zhang L, Hwang PM, et al (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    PubMed  CAS  Google Scholar 

  106. Yu J, Wang Z, Kinzler KW, et al (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100:1931–1936

    PubMed  CAS  Google Scholar 

  107. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  108. Gross A, Yin XM, Wang K, et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochromecrelease, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    PubMed  CAS  Google Scholar 

  109. Zha J, Weiler S, Oh KJ, et al (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765

    PubMed  CAS  Google Scholar 

  110. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    PubMed  CAS  Google Scholar 

  111. Kutuk O, Basaga H (2003) Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol Med 9:549–557

    PubMed  CAS  Google Scholar 

  112. Masuda J, Ross R (1990) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 10:164–177

    CAS  Google Scholar 

  113. Pauletto P, Sartore S, Pessina AC (1994) Smooth-muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clin Sci 87:467–479

    PubMed  CAS  Google Scholar 

  114. Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126

    PubMed  CAS  Google Scholar 

  115. Alvarez RJ, Gips SJ, Moldovan N, et al (1997) 17beta-estradiol inhibits apoptosis of endothelial cells. Biochem Biophys Res Commun 237:372–381

    PubMed  CAS  Google Scholar 

  116. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274

    PubMed  CAS  Google Scholar 

  117. Soldani C, Scovassi AI, Canosi U, et al (2005) Multicolor fluorescence technique to detect apoptotic cells in advanced coronary atherosclerotic plaques. Eur J Histochem 49:47–52

    PubMed  CAS  Google Scholar 

  118. Lee HS, Chang JS, Baek JA, et al (2005) TNF-alpha activates death pathway in human aorta smooth muscle cell in the presence of 7-ketocholesterol. Biochem Biophys Res Commun 333:1093–1099

    PubMed  CAS  Google Scholar 

  119. Michowitz Y, Goldstein E, Roth A, et al (2005) The involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in atherosclerosis. J Am Coll Cardiol 45:1018–1024

    PubMed  CAS  Google Scholar 

  120. Takarada S, Imanishi T, Hano T, Nishio I (2003) Oxidized low-density lipoprotein sensitizes human vascular smooth muscle cells to FAS (CD95)-mediated apoptosis. Clin Exp Pharmacol Physiol 30:289–294

    PubMed  CAS  Google Scholar 

  121. Kockx MM, De Meyer GR, Muhring J, et al (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315

    PubMed  CAS  Google Scholar 

  122. Saxena A, McMeekin JD, Thomson DJ (2002) Expression of Bcl-x, Bcl-2, Bax, and Bak in endarterectomy and atherectomy specimens. J Pathol 196:335–342

    PubMed  CAS  Google Scholar 

  123. Pollman MJ, Hall JL, Mann MJ, et al (1998) Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4:222–227

    PubMed  CAS  Google Scholar 

  124. Krajewski S, Krajewska M, Shabaik A, et al (1994) Immunohistochemical determination ofin vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336

    PubMed  CAS  Google Scholar 

  125. Molostvov G, Morris A, Rose P, Basu S (2002) Modulation of Bcl-2 family proteins in primary endothelial cells during apoptosis. Pathophysiol Haemost Thromb 32:85–91

    PubMed  CAS  Google Scholar 

  126. Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337

    PubMed  CAS  Google Scholar 

  127. Badrichani AZ, Stroka DM, Bilbao G, et al (1999) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 103:543–553

    PubMed  CAS  Google Scholar 

  128. Ackermann EJ, Taylor JK, Narayana R, Bennett CF (1999) The role of antiapoptotic Bcl-2 family members in endothelial apoptosis elucidated with antisense oligonucleotides. J Biol Chem 274:11245–11252

    PubMed  CAS  Google Scholar 

  129. Grethe S, Ares MP, Andersson T, Porn-Ares MI (2004) p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L). Exp Cell Res 298:632–642

    PubMed  CAS  Google Scholar 

  130. Kim HH, Kim K (2003) Enhancement of TNF-alpha-mediated cell death in vascular smooth muscle cells through cytochrome c-independent pathway by the proteasome inhibitor. FEBS Lett 535:190–194

    PubMed  CAS  Google Scholar 

  131. Sata M, Walsh K (1998) Oxidized LDL activates Fas-mediated endothelial cell apoptosis. J Clin Invest 102:1682–1689

    Article  PubMed  CAS  Google Scholar 

  132. Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20:309–316

    PubMed  CAS  Google Scholar 

  133. Chen J, Mehta JL, Haider N, et al (2004) Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94:370–376

    PubMed  CAS  Google Scholar 

  134. Vicca S, Massy ZA, Hennequin C, et al (2003) Apoptotic pathways involved in U937 cells exposed to LDL oxidized by hypochlorous acid. Free Radic Biol Med 35:603–615

    PubMed  CAS  Google Scholar 

  135. Kataoka H, Kume N, Miyamoto S, et al (2001) Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:955–960

    PubMed  CAS  Google Scholar 

  136. Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276:42468–42476

    PubMed  CAS  Google Scholar 

  137. Liu J, Thewke DP, Su YR, et al (2005) Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 25:174–179

    PubMed  CAS  Google Scholar 

  138. Rusinol AE, Thewke D, Liu J, et al (2004) AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J Biol Chem 279:1392–1399

    PubMed  CAS  Google Scholar 

  139. Napoli C, Quehenberger O, De Nigris F, et al (2000) Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J 14:1996–2007

    PubMed  CAS  Google Scholar 

  140. Meilhac O, Escargueil-Blanc I, Thiers JC, et al (1999) Bcl-2 alters the balance between apoptosis and necrosis, but does not prevent cell death induced by oxidized low density lipoproteins. FASEB J 13:485–494

    PubMed  CAS  Google Scholar 

  141. Hufnagel B, Dworak M, Soufi M, et al (2005) Unsaturated fatty acids isolated from human lipoproteins activate protein phosphatase type 2Cbeta and induce apoptosis in endothelial cells. Atherosclerosis. 180:245–254

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huveyda Basaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutuk, O., Basaga, H. Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis. Apoptosis 11, 1661–1675 (2006). https://doi.org/10.1007/s10495-006-9402-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9402-7

Keywords

Navigation