Skip to main content
Log in

Immersed Boundaries in Large Eddy Simulation of Compressible Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Methods to immerse walls in a structured mesh are examined in the context of fully compressible solutions of the Navier–Stokes equations. The ghost cell approach is tested along with compressible conservative immersed boundaries in canonical flow configurations; the reflexion of pressure waves on walls arbitrarily inclined on a cartesian mesh is studied, and mass conservation issues examined in both a channel flow inclined at various angles and flow past a cylinder. Then, results from Large Eddy Simulation of a flow past a rectangular cylinder and a transonic cavity flow are compared against experiments, using either a multi-block mesh conforming to the wall or immersed boundaries. Different strategies to account for unresolved transport by velocity fluctuations in LES are also compared. It is found that immersed boundaries allow for reproducing most of the coupling between flow instabilities and pressure-signal properties observed in the transonic cavity flow. To conclude, the complex geometry of a trapped vortex combustor, including a cavity, is simulated and results compared against experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaras, E.: Modeling complex boundaries using an external force field on fixed Cartesian grids in Large Eddy Simulations. Comput. Fluids 33, 375–404 (2004)

    Article  MATH  Google Scholar 

  2. Berthelsen, P., Faltinsen, O.: A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries. J. Comput. Phys. 227(9), 4354–4397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyer, R.P., Leveque, R.J.: Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Math. 29, 332–364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burg, J.: Maximum entropy spectral analysis. Ph.D. thesis, Stanford University (1975)

  5. Burguburu, J.: Experimental study of flame stability in an aeronautical combustion chamber using trapped burned gases. Ph.D. thesis, National Institute of Applied Sciences Rouen (2012)

  6. Capizzano, F.: A turbulent wall model for immersed boundary methods. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando (2010)

  7. Chen, J.H., Pritchard, W.G., Tavener, S.J.: Bifurcation for flow past a cylinder between parallel planes. J. Fluid Mech. 284, 23 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, J.I., Oberoi, R.C., Edwards, J.R., Rosati, J.A.: An immersed boundary method for complex incompressible flows. J. Comput. Phys. 224, 757–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Tullio, M.D., Palma, P.D., Iaccarino, G., Pascazio, G., Napolitano, M.: An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 225(2), 2098–2117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Domingo, P., Vervisch, L., Deynante, D.: Large Eddy Simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)

    Article  Google Scholar 

  11. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large Eddy Simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  MATH  Google Scholar 

  12. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in stuctures meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forestier, N., Geffroy, P., Jacquin, L.: Etude expérimentale des propriétés instationnaires d’une couche de mélange compressible sur une cavité: cas d’une cavité ouverte peu profonde. Rt 22/00153 dafe, ONERA (in French) (2003)

  15. Forestier, N., Jacquin, L., Geffroy, P.: The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech. 475, 101–145 (2003)

    Article  MATH  Google Scholar 

  16. Ghias, R., Mittal, R., Lund, T.S.: A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries. AIAA Paper (2004)

  17. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gloerfelt, X.: Bruit rayonné par un écoulement affleurant une cavité: simulation aéroacoustique directe et application de méthodes intégrales. Ph.D. thesis, Ecole Centrale de Lyon (2001)

  20. Gloerfelt, X.: Cavity noise. In: VKI Lectures: Aerodynamic Noise from Wall-Bounded Flows. Von Karman Institute (2009)

  21. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip boundary condition with an external force field. J. Comput. Phys. 105, 354–366 (1993)

    Article  MATH  Google Scholar 

  22. Gottlieb, S., Shu, C.: Total variation diminishing runge-kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigoriadis, D.G.E., Bratzis, J.G., Goulas, A.: LES of the flow past a rectangular cylinder using the immersed boundary concept. Int. J. Numer. Methods Fluids 41, 615–632 (2003)

    Article  MATH  Google Scholar 

  24. Grigoriadis, D.G.E., Bartzis, J.G., Goulas, A.: Efficient treatment of complex geometries for Large Eddy Simulations of turbulent flows. Comput. Fluids 33, 201–222 (2004)

    Article  MATH  Google Scholar 

  25. Hu, X., Khoo, B., Adams, N., Huang, F.: A conservative interface method for compressible flows. J. Comput. Phys. 219(2), 553–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56(3), 331–347 (2003)

    Article  Google Scholar 

  27. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper 1259, 1981 (1981)

    Google Scholar 

  28. Kim, J., Kim, D., Haecheon, C.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirkpatrick, M.P., Armfield, S.W., Kent, J.H.: A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional cartesian grid. J. Comput. Phys. 184(1), 1–36 (2003)

    Article  MATH  Google Scholar 

  30. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or Large Eddy Simulation. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  31. Lai, M.C., Peskin, C.S.: An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laizet, S., Lardeau, S., Lamballais, E.: Direct numerical simulation of a mixing layer downstream a thick plate. Phys. Fluids 22(1), 015,104 (2003)

    Google Scholar 

  33. Lamarque, N., Porta, M., Nicoud, F., Poinsot, T.: On the stability and dissipation of wall boundary conditions for compressible flows. Int. J. Numer. Methods Fluids 62(10), 1134–1154 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Lamballais, E., Silvestrini, J.: Direct numerical simulation of interactions between a mixing layer and a wake around a cylinder. J. Turbulence 3, Article Number 028 (2002). doi:10.1088/1468-5248/3/1/028 (2002)

  35. Larchevêque, L., Sagaut, P., Mary, I., Labbé, O.: Large-Eddy Simulation of a compressible flow past a deep cavity. Phys. Fluids. 15(1), 193–210 (2003)

    Article  Google Scholar 

  36. Larchevêque, L., Sagaut, P., Lê, T.H., Comte, P.: Large eddy simulation of a compresible flow in a three dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265–301 (2004)

    Article  MATH  Google Scholar 

  37. Larchevêque, L., Sagaut, P., Labbé, O.: Large-Eddy Simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J. Fluid Mech. 577, 105–126 (2007)

    Article  MATH  Google Scholar 

  38. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and Large-Eddy Simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lodato, G., Vervisch, L., Domingo, P.: A compresssible wall-adapting similarity mixed model for Large-Eddy Simulation of the impinging round jet. Phys. Fluids 21, 035,102 (2009)

    Article  Google Scholar 

  40. Lyn, D.A., Einavv, S., Rodi, W., Park, J.H.: A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285–319 (1995)

    Article  Google Scholar 

  41. Majumdar, S., Iaccarino, G., Durbin, P.: RANS solver with adaptive structured boundary non-conforming grids. In: Annual Research Briefs, pp. 353–366 (2001)

  42. Marple, S.L.: Digital Spectral Analysis with Applications. Prentice Hall (1987)

  43. McLean, I., Gartshore, I.: Spanwise correlation of pressure on a rigid square section cylinder. J. Wind Eng. 41, 779–808 (1992)

    Google Scholar 

  44. Meneveau, C., Lund, T., Cabot, W.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  45. Meyer, M., Devesa, A., Hickel, S., Adams, N.A.: A conservative immersed interface method for Large-Eddy Simulation of incompressible flows. J. Comput. Phys. 229, 6300–6317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mittal, R., Balanchadar, S.: Effect of intrinsic three-dimensionality on the lift and drag of nominaly two-dimensional cylinders. Phys. Fluids. 7(8), 1841 (1995)

    Article  Google Scholar 

  47. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., Von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual Research Briefs, pp. 317–327 (1997)

  49. Moin, P., Squires, K., Cabot, W., Lee, C.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. A 3(11), 2746–2757 (1991)

    Article  MATH  Google Scholar 

  50. Murakami, S., Izuka S. ans Ooka, R.: Cfd analysis of turbulent flow past square cylinder using dynamic LES. J. Fluids Struct. 13, 1097–1112 (1999)

    Article  Google Scholar 

  51. Nicoud, F.: Defining wave amplitude in characteristic boundary conditions. J. Comput. Phys. 149, 418–422 (1999)

    Article  MATH  Google Scholar 

  52. Palma, P.D., de Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed boundary method for compressible viscous flows. Comput. Fluids 35(7), 693–702 (2006)

    Article  MATH  Google Scholar 

  53. Peskin, C.S.: The fluid dynamics of heart valves: experimental, theoretical and computational methods. Annu. Rev. Fluid. Mech. 14, 135–259 (1982)

    Article  Google Scholar 

  54. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer (2000)

  56. Sagaut, P., Garnier, E., Tromeur, E., Larchevêque, L., Labourasse, E.: Turbulent inflow conditions for Large-Eddy Simulation of supersonic and subsonic wall flows. AIAA J. 42, 469–477 (2004)

    Article  Google Scholar 

  57. Sagaut, P., Deck, S., Larchevêque, L.: Numerical simulation data: from validation to physical analysis. In: Congrès Francophone de Technique Laser. CFTL 2008, Futuroscope (2008)

  58. Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001)

    Article  Google Scholar 

  59. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Berlin (2003)

    Google Scholar 

  60. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  61. Subramanian, V., Domingo, P., Vervisch, L.: Large-Eddy Simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)

    Article  Google Scholar 

  62. Swanson, R., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101(2), 292–306 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tatsumi, S., Martinelli, L., Jameson, A.: Flux-limited schemes for the compressible Navier–Stokes equations. AIAA J. 33(2), 252–261 (1995)

    Article  MATH  Google Scholar 

  64. Thornber, B., Drikakis, D.: Implicit Large-Eddy Simulation of a deep cavity using high-resolution methods. AIAA J. 46(10), 2634–2645 (2008)

    Article  Google Scholar 

  65. Tseng, Y.H., Ferziger, J.H.: LES of 3D turbulent wavy bounadry flow: validation of a ghost-cell immersed boundary method. In: Proc. 3rd International Symposium on Turbulence and Shear Flow Phenomena. Sendai, Japan (2003)

  66. Tyagi, M., Acharya, S.: Large Eddy Simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. Int. J. Numer. Methods Fluids 48, 691–722 (2005)

    Article  MATH  Google Scholar 

  67. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.: LES in complex geometries using boundary body forces. AIAA 38, 427–433 (2000)

    Article  Google Scholar 

  68. Voke, P.R.: Flow past a square cylinder test case LES2, vol. Direct and Large Eddy Simulation II. ERCOFTAC Series (1997)

  69. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids 16(10), 3670–3681 (2004)

    Article  Google Scholar 

  70. Ye, T., Mittal, R., Udaykumar, H.S., Shyy, W.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209–240 (1999)

    Article  MATH  Google Scholar 

  71. Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1986)

    Article  MATH  Google Scholar 

  72. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5(12), 3186–3196 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Domingo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlin, C., Domingo, P. & Vervisch, L. Immersed Boundaries in Large Eddy Simulation of Compressible Flows. Flow Turbulence Combust 90, 29–68 (2013). https://doi.org/10.1007/s10494-012-9421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9421-0

Keywords

Navigation