Skip to main content
Log in

Behaviour of coconut mites preceding take-off to passive aerial dispersal

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aratchige NS, Sabelis MW, Lesna I (2007) Plant structural changes due to herbivory: do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth? Exp Appl Acarol 43:97–107

    Article  PubMed Central  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

  • Bergh JC (2001) Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in central Florida. Environ Entomol 30(2):318–326

    Article  Google Scholar 

  • Bergh JC, McCoy CW (1997) Aerial dispersal of citrus rust mite (Acari: Eriophyidae) from Florida citrus groves. Environ Entomol 26:256–264

    Google Scholar 

  • Bergh JC, Weiss CR (1993) Pear rust mite, Epitrimerus pyri (Acarina: Eriophyoidae) oviposition and nymphal development on Pyrus and non-Pyrus hosts. Exp Appl Acarol 17:215–224

  • Davis R (1964) Autoecological studies of Rhynacus breitlowi Davis (Acarina: Eriophyoidae). Fla Entomol 47:113–121

  • Duffner K, Schruft G, Guggenheim R (2001) Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. J Pest Sci 74:1–6

    Google Scholar 

  • Frost WE (1997) Polyphenic wax production in Abacarus (Acari: Eriophyidae), and implications for migratory fitness. Physiol Entomol 22:37–46

    Article  Google Scholar 

  • Galvão AS, Gondim MGC Jr, Michereff SJ (2008) Escala diagramática de dano de Aceria guerreronis Keifer (Acari: Eriophyidae) em coqueiro. Neotrop Entomol 37:723–728

    Article  PubMed  Google Scholar 

  • Galvão AS, Gondim MGC Jr, de Moraes GJ, Melo JWS (2011) Distribution of Aceria guerreronis and Neoseiulus baraki among and within coconut bunches in northeast Brazil. Exp Appl Acarol 54:373–384

    Article  PubMed  Google Scholar 

  • Galvão AS, Melo JWS, Monteiro VB, Lima DB, de Moraes GJ, Gondim MGC Jr (2012) Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp Appl Acarol 57:1–13

    Article  PubMed  Google Scholar 

  • Gibson WW, Painter RH (1957) Transportation by aphids of the wheat curl mite, Aceria tulipae (K.), a vector of the wheat streak mosaic virus. J Kansas Entomol Soc 30:147–153

    Google Scholar 

  • Howard FW, Abreu-Rodriguez E, Denmark HA (1990) Geographical and seasonal distribution of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), in Puerto Rico and Florida, USA. J Agric Univ 74:237–251

    Google Scholar 

  • Huffaker CB, Van de Vrie MJ, McMurtry JA (1969) The ecology of Tetranychidae mites and their natural control. Annu Rev Entomol 14:125–174

    Article  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley, p 614

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P (2007) Refuge use by the coconut mite Aceria guerreronis fine scale distribution and association with other mites under the perianth. Biol Control 43:102–110

    Article  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P (2008) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    CAS  PubMed  Google Scholar 

  • Lesna I, Conijn CGM, Sabelis MW (2004) From biological control biological insight; rust-mite induced change in bulb morphology, a new mode of indirect plant defense. Phytophaga 14:285–291

    Google Scholar 

  • Lindquist EE, Oldfield CN (1996) Evolution and phylogeny: evolution of eriophyoid mites in relation to their host plant. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control, world crop pest, vol 6. Elsevier, Amsterdam, pp 277–300

    Google Scholar 

  • Manson DCM, Gerson U (1996) Web spinning, wax secretion and liquid secretion by eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control, World Crop Pest, vol 6. Elsevier, Amsterdam, pp 251–258

    Google Scholar 

  • Mariau D (1977) Aceria (Eriophyes) guerreronis: un important ravageur des cocoteraies africaines et américaines. Oléagineux 32:101–108

    CAS  Google Scholar 

  • Mariau D, Julia JF (1970) L´acariose a Aceria guerreronis (Keifer), ravageur du cocotier. Oléagineux 25:459–464

    Google Scholar 

  • Melo JWS, Lima DB, Pallini A, Oliveira JEM, Gondim MGC Jr (2011) Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis. Exp Appl Acarol 55:191–202

    Article  PubMed  Google Scholar 

  • Melo JWS, Domingos CA, Pallini A, Oliveira JEM, Gondim MGC Jr (2012) Removal of bunches or spikelets is not effective for the control of Aceria guerreronis. HortScience 47:1–5

    Google Scholar 

  • Melo JWS, Lima DB, Sabelis MW, Pallini A, Gondim Jr MGC (2014) Limits to ambulatory displacement of coconut mites in absence and presence of food-related cues. Exp Appl Acarol. 62:449–461

  • Michalska K, Skoracka A, Navia D, Amrine JW Jr (2010) Behavioural studies on eriophyoid mites—an overview. Exp Appl Acarol 51:31–59

    Article  PubMed  Google Scholar 

  • Moore D, Alexander L (1987) Aspects of migration and colonization of the coconut palm by the coconut mite, Eriophyes guerreronis (Keifer) (Acari: Eriophyidae). Bull Entomol Res 77:641–650

    Article  Google Scholar 

  • Moore D, Howard FW (1996) Coconuts. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 561–570

    Google Scholar 

  • Nault LR, Styer WE (1969) The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio. Ann Entomol Soc Am 62:1443–1455

    Google Scholar 

  • Negloh K, Hanna R, Schausberger P (2010) Season- and fruit age-dependent population dynamics of Aceria guerreronis and its associated predatory mite Neoseiulus paspalivorus on coconut in Benin. Biol Control 54:349–358

    Article  Google Scholar 

  • Oldfield GN (1996) Diversity and host plant specifity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites-their biology, natural enemies and control. Elsevier, Amsterdam, World Crop Pests, vol 6, pp 199–216

  • Ozman SK, Goolbsby JA (2005) Biology and phenology of the eriophyid mite Floracarus perrepae, on its native host in Australia, old world climbing fern Lygodium microphyllum. Exp Appl Acarol 35:197–213

    Article  PubMed  Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology; life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 329–366

  • SAS Institute (2001) SAS/STAT User’s guide, version 8.02, TS level 2MO. SAS Institute Inc., Cary, NC

  • Schlichting H (1968) Boundary-Layer Theory. McGraw-Hill, New York

  • Seguni Z (2002) Incidence, distribution and economic importance of the coconut eriophyid mite, Aceria guerreronis Keifer in Tanzanian coconut based cropping systems. In: Fernando LCP, de Moraes GJ, Wickramananda IR (eds) Proceedings of the international workshop on coconut mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 54–57

    Google Scholar 

  • Shvanderov FA (1975) The role of phoresy in the migration of eriophyid mites (Eriophyoidea). Zool Zh 54:458–461

    Google Scholar 

  • Smith BD (1960) The behaviour of the black currant gall mite (Phytoptus ribi Nal.) during the free living phase of its life cycle. Ann Rep Long Ashton Agric Hort Res Sta 1959:130–136

    Google Scholar 

  • Sternlicht M, Goldenberg S, Cohen M (1973) Development of the plum gall and trials to control its mites Acalitus phloeocoptes (Eriophyoidae, Acarina). Ann Zool Ecol Anim 5:365–377

  • Thirumalai Thevan PS, Muthukrishman N, Manoharan T, Thangaraj T (2004) Influence of phenotypic and biochemical factors of coconut on eriophyid mite, Aceria guerreronis Keifer and predatory, Amblyseius spp. mite. J Entomol Res 28:291–299

    Google Scholar 

  • Westphal, E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distortions. In: Lindquist E, Sabelis MW, Bruin J (Eds) Eriophyoid mites their biology, natural enemies and control, World Crop Pests, Vol. 6, Elsevier, Amsterdam, pp. 231–242

  • Zhao S, Amrine JW Jr (1997a) A new method for studying aerial dispersal behaviour of eriophyoid mites (Acari: Eriophyoidea). Syst Appl Acarol 2:107–110

    Google Scholar 

  • Zhao S, Amrine JW Jr (1997b) Investigation of snowborne mites (Acari) and relevance to dispersal. Int JAcarol 23:209–213

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Izabela Lesna for critical reading of the manuscript. The research reported in this manuscript was supported by a grant to the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq – MCTI no 14/2012 (Proc. 472713/2012-4)] from the Brazilian government. J.W.S. Melo was additionally supported by a grant to the CNPq [MCT nº 70/2009 (Proc. 147462/2010-0) and SWE/CSF (Proc. 202488/2011-0)]. The manuscript is part of J.W.S. Melo’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. S. Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, J.W.S., Lima, D.B., Sabelis, M.W. et al. Behaviour of coconut mites preceding take-off to passive aerial dispersal. Exp Appl Acarol 64, 429–443 (2014). https://doi.org/10.1007/s10493-014-9835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9835-6

Keywords

Navigation