Skip to main content
Log in

Streptomyces polaris sp. nov. and Streptomyces septentrionalis sp. nov., isolated from frozen soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two novel actinomycetes, designated strains ZLN81T and ZLN712T, were isolated from a frozen soil sample which was collected from the Arctic region. Chemotaxonomic and morphological characteristics were found to be typical of members of the genus Streptomyces. Based on 16S rRNA gene sequence analyses, the two strains show high similarity with Streptomyces polygonati NEAU-G9T (99.45%, 99.17%) and Streptomyces yanglinensis 1307T (98.17%, 98.10%). DNA–DNA relatedness between each of the strains and their close phylogenetic neighbours showed that they belonged to distinct species. Multilocus sequence analysis (MLSA) using four housekeeping genes (atpD, gyrB, recA and rpoB) for comparing Streptomyces type strains showed that the MLSA distance of strains ZLN81T and ZLN712T to the closely related species was greater than the 0.007 threshold. The cell wall amino acids of the two strains were identified as alanine, glycine, asparagine, ll-diaminopimelic acid and meso-diaminopimelic acid. The whole cell sugars were identified as galactose and glucose for strain ZLN81T and galactose, glucose and xylose for strain ZLN712T. The predominant menaquinones were identified as MK-10(H8), MK-9(H4) and MK-9(H6) for strain ZLN81T and MK-9(H0), MK-10(H8) and MK-9(H6) for strain ZLN712T. The polar lipid profile of strain ZLN81T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and two unidentified phospholipids, while that of strain ZLN712T consisted of diphosphatidylglycerol, phosphatidylethanolamine, a ninhydrin-positive glycophospholipid, phosphatidylinositol mannosides and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C17:0, C16:0 and anteiso-C15:0 for strain ZLN81T and iso-C16:0, C16:0, anteiso-C15:0 and iso-C14:0 for strain ZLN712T. The DNA G+C contents were found to be 73.96 and 72.77 mol% for strains ZLN81T and ZLN712T, respectively. On the basis of these phenotypic and genotypic data, strains ZLN81T (= CCTCC AA 2018010T = DSM 107255T) and ZLN712T (= CCTCC AA 2018011T = DSM 107266T) are concluded to represent two novel species of the genus Streptomyces, for which the names Streptomyces polaris sp. nov. and Streptomyces septentrionalis sp. nov. are proposed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai T (1975) Culture media for actinomycetes. The Society for Actinomycetes Japan, Tokyo

    Google Scholar 

  • Brinkmeyer R, Knittel K, Jugens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP, Goodfellow M (2014) Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie Van Leeuwenhoek 105:849–861

    Article  CAS  PubMed  Google Scholar 

  • Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E (2008) Determining the structure and mode of action of microbisporicin a potent lantibiotic active against multiresistant pathogens. Chem Biol 15:22–31

    Article  CAS  PubMed  Google Scholar 

  • Euzéby J (2010) List of prokaryotic names with standing in nomenclature http://www.bacterio.cict.fr/s/streptomycesa.html

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  • Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  PubMed  Google Scholar 

  • Guo SY, Liu CX, Liu SH, Guan XJ, Guo LF, Jia FY, Wang XJ, Xiang WS (2016) Streptomyces polygonati sp. nov., an endophytic actinomycete isolated from a root of Polygonatum odoratum (Mill.). Int J Syst Evol Microbiol 66:1488–1493

    Article  CAS  PubMed  Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristof-fersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a High Arctic permafrost soil from Spitsbergen, Northern Norway. Environ Microbiol 9:2870–2884

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kämpfer P (2012) Genus Streptomyces Waksman and Henrici 1943, 339AL, emend Witt and Stackebrandt 1990, 370, emend Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, part B. Springer, New York, pp 1455–1767

    Google Scholar 

  • Kämpfer P, Labeda DP (2006) International Committee on Systematics of Prokaryotes; subcommittee on the taxonomy of the Streptomycetaceae: minutes of the meeting, 25 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 56:495

    Article  Google Scholar 

  • Kämpfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Article  PubMed  Google Scholar 

  • Kelly KL (1964) Inter-society color council–national bureau of standards color name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  • Kim KO, Shin KS, Kim MN, Shin KS, Labeda DP, Han JH, Kim SB (2012) Reassessment of the status of Streptomyces setonii and reclassification of streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis. Int J Syst Evol Microbiol 62(Pt 12):2978

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B, Vanncanneyt M, Swings J, Kim SB, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104

    Article  CAS  PubMed  Google Scholar 

  • Labeda DP, Doroghazi JP, Ju K-S, Metcalf WW (2014) Taxonomic evaluation of Streptomyces albus and related species using multi-locus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 64:894–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583

    Article  CAS  PubMed  Google Scholar 

  • Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:205–212

    Article  PubMed  Google Scholar 

  • Larose C, Dommergue A, Vogel TM (2013) The dynamic arctic snow pack: an unexplored environment for microbial diversity and activity. Biology 2:317–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Lechevalier MP, De Biévre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Qin S, Zhu WY, Xu LH, Li WJ (2009) Streptomyces sedi sp. nov., isolated from surface-sterilized roots of Sedum sp. Int J Syst Evol Microbiol 59:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • Li L, Tang YL, Wei B, Xie QY, Deng ZX, Hong K (2013) Micromonospora sonneratiae sp. nov., isolated from a root of Sonneratia apetala. Int J Syst Evol Microbiol 63:2383–2388

    Article  CAS  PubMed  Google Scholar 

  • Lodders N, Kämpfer P (2007) Streptomycetaceae: phylogeny, ecology and pathogenicity. In: Kendall SK (ed) Encyclopedia of life science. Wiley, Chichester, pp 1–9

    Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T (1999) Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605

    Article  CAS  PubMed  Google Scholar 

  • Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703

    Article  CAS  PubMed  Google Scholar 

  • Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multi-locus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for the systematics of the whole genus. Syst Appl Microbiol 35:7–18

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital rotologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101, MIDI, Newark

  • Scherer S, Neuhaus K (2006) Life at low temperatures. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic communities and ecophysiology, 4th edn. Springer, Berlin, pp 210–263

    Chapter  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Suutari M, Laakso S (1992) Unsaturated and branchedchain fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim Biophys Acta 1126:119–124

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Li YL, Zhao FC (2017) Secondary metabolites from polar organisms. Mar Drugs 15:28

    Article  CAS  PubMed Central  Google Scholar 

  • Veyisoglu A, Sahin N (2014) Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 64:819–826

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46(4):337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Xu XX, Qu Z, Wang HL, Lin HP, Xie QY, Ruan JS, Hong K (2011) Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:320–324

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Williams ST, Cross T (1971) Actinomycetes. In: Booth C (ed) In methods in microbiology, 4th edn. Academic Press, London, pp 295–334

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Xiao J, Wang Y, Luo YX, Xie SJ, Ruan JS, Xu J (2009) Streptomyces avicenniae sp. nov., a novel actinomycete isolated from the rhizosphere of the mangrove plant Avicennia mariana. Int J Syst Evol Microbiol 59:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Xu CG, Wang LM, Cui QF, Huang Y, Liu ZH, Zheng GY, Goodfellow M (2006) Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Int J Syst Evol Microbiol 56:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Xie QY, Wang C, Wang R, Qu Z, Lin HP, Goodfellow M, Hong K (2011) Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 61(5):1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng ZX, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7

    Article  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ruan CY, Peng F, Deng ZX, Hong K (2016) Streptomyces arcticus sp. nov., isolated from frozen soil. Antonie Van Leeuwenhoek 66:1482–1487

    CAS  Google Scholar 

  • Zhu HH, Jiang SM, Yao Q, Wang YH, Chen MB, Chen YL, Guo J (2011) Streptomyces fenghuangensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:2811–2815

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China 2018YFC0311000 and the EU FP7 Project PharmaSea (312184).

Author contributions

MK performed the laboratory experiments, analyzed the data, and drafted the manuscript. PN contributed to the polyphasic taxonomy. LZ contributed to the isolation of Arctic actinomycete strains and primarily identified that the two strains may be novel species. FP contributed to the collection of frozen soil from the Arctic. KH and ZD conceived the experiments and revised the whole manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamjam, M., Nopnakorn, P., Zhang, L. et al. Streptomyces polaris sp. nov. and Streptomyces septentrionalis sp. nov., isolated from frozen soil. Antonie van Leeuwenhoek 112, 375–387 (2019). https://doi.org/10.1007/s10482-018-1166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1166-x

Keywords

Navigation