Skip to main content
Log in

Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9T, was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9T was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9T belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917T (98.8 %) and Streptomyces mauvecolor JCM 5002T (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388T (98.6 %), Streptomyces xantholiticus JCM 4282T (98.6 %) and Streptomyces peucetius JCM 9920T (98.5 %). Thus, a combination of DNA–DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9T and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9T (=CGMCC 4.7277T = DSM 100524T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1993) In: Parks LC (ed) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics; where we are now and where are we heading. J Antibiot 51:1–26

    Google Scholar 

  • Blodgett JAV, Oh DC, Cao S, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci 107:11692–11697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carr G, Poulsen M, Klassen JL, Hou YP, Wyche TP, Bugni TS, Currie CR, Clardy J (2012) Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of Vinylamycin. Org Lett 14:2822–2825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284

    Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (2003) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 423:461

    Article  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biot 41:185–201

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 105:307–315

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Fiedler H-P (2010) A guide to successful bio-prospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Guan XJ, Liu CX, Zhao JW, Fang BZ, Zhang YJ, Li LJ, Jin PJ, Wang XJ, Xiang WS (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 107:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Guo ZK, Liu SB, Jiao RH, Wang T, Tan RX, Ge HM (2012) Angucyclines from an insect-derived actinobacterium Amycolatopsis sp. HCa1 and their cytotoxic activity. Bioorg Med Chem Lett 22:7490–7493

    Article  CAS  PubMed  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P (2012) Genus I. Streptomyces. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the Actinobacteria, vol 5, 2nd edn. Springer, New York, pp 1455–1462

    Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US

  • Kerry MO, Andrew HS, Jacob AR (2014) Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355

    Article  Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M, Currie CR, Clardy J (2014) Natalamycin A, an ansamysin from a temite-associated Streptomyces sp. Chem Sci 1:4333–4338

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatoš A (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetes. Gustav Fischer Verlag, Jena, pp 393–405

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  • Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Madden AA, Grassetti A, Soriano JAN, Starks PT (2013) Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. Environ Entomol 42:703–710

    Article  PubMed  Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  • Martin K, Tobias E (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28:315–327

    Article  Google Scholar 

  • McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviou RJ (2000) A simple HPLC method for analyzing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O′Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nikapitiya C (2012) Bioactive secondary metabolites from marine microbes for drug discovery. Adv Food Nutr Res 65:363–387

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saria O, Aram M, Tânia N, Lars HH, N’golo AK, Søsen JS, Duur KA, Jacobus JB, Andreas B, Michael P (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644

    Article  Google Scholar 

  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178

    CAS  Google Scholar 

  • Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficusreligiosa). Int J Syst Evol Microbiol 61:1165–1169

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacteral kalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

  • Yousif G, Busarakam K, Kim BY, Goodfellow M (2015) Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment. Antonie Van Leeuwenhoek 108:783–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Natural Science Foundation of China (No. 31471832, 31171913, 31500010, 31572070 and 31372006), the National Key Technology R&D Program (No. 2012BAD19B06), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP), the Youth Science Foundation of Heilongjiang Province (No. QC2014C013), the “Young Talents” Project of Northeast Agricultural University (14QC02), the Sicence and Technology Research Project of Heilongjiang Provincial Educational Commission (No. 12541001), the China Postdoctoral Science Foundation (2014M561319) and the Heilongjiang Postdoctoral Fund (LBH-Z14027). We are grateful to Prof. Aharon Oren for helpful advice on the specific epithet.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjing Wang or Wensheng Xiang.

Additional information

Lu Bai and Chongxi Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Liu, C., Guo, L. et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 109, 253–261 (2016). https://doi.org/10.1007/s10482-015-0628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0628-7

Keywords

Navigation