Skip to main content
Log in

Nonparametric estimation of the cross ratio function

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The cross ratio function (CRF) is a commonly used tool to describe local dependence between two correlated variables. Being a ratio of conditional hazards, the CRF can be rewritten in terms of (first and second derivatives of) the survival copula of these variables. Bernstein estimators for (the derivatives of) this survival copula are used to define a nonparametric estimator of the cross ratio, and asymptotic normality thereof is established. We consider simulations to study the finite sample performance of our estimator for copulas with different types of local dependency. A real dataset is used to investigate the dependence between food expenditure and net income. The estimated CRF reveals that families with a low net income relative to the mean net income will spend less money to buy food compared to families with larger net incomes. This dependence, however, disappears when the net income is large compared to the mean income.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bouezmarni, T., Rombouts, J., Taamouti, A. (2009). Asymptotic properties of the Bernstein density copula estimator for $\alpha $-mixing data. Journal of Multivariate Analysis, 101, 1–10.

    Article  MathSciNet  Google Scholar 

  • Bouezmarni, T., El Ghouch, A., Taamouti, A. (2013). Bernstein estimator for unbounded copula densities. Statistics and Risk Modeling, 30, 343–360.

    Article  MathSciNet  Google Scholar 

  • Chen, M.-C., Bandeen-Roche, K. (2005). A diagnostic for association in bivariate survival models. Lifetime Data Analysis, 11, 245–264.

    Article  MathSciNet  Google Scholar 

  • Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.

    Article  MathSciNet  Google Scholar 

  • Duchateau, L., Janssen, P. (2008). The frailty model. New York: Springer.

    MATH  Google Scholar 

  • Duchateau, L., Janssen, P., Kezic, I., Fortpied, C. (2003). Evolution of recurrent asthma event rate over time in frailty models. Journal of the Royal Statistical Society (Series C), 52, 355–363.

    Article  MathSciNet  Google Scholar 

  • Gijbels, I., Mielniczuk, J. (1990). Estimating the density of a copula function. Communications in Statistics, Theory and Methods, 19, 445–464.

    Article  MathSciNet  Google Scholar 

  • Glidden, D. V. (2007). Pairwise dependence diagnostics for clustered failure-time data. Biometrika, 94, 371–385.

    Article  MathSciNet  Google Scholar 

  • Härdle, W. (1990). Applied nonparametric regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hsu, L., Prentice, R. L. (1996). On assessing the strength of dependency between failure time variables. Biometrika, 83, 491–506.

    Article  MathSciNet  Google Scholar 

  • Hu, T., Nan, B., Lin, X., Robins, J. M. (2011). Time-dependent cross ratio estimation for bivariate failure times. Biometrika, 98, 341–354.

    Article  MathSciNet  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N. (2012). Large sample behavior of the Bernstein copula estimator. Journal of Statistical Planning and Inference, 142, 1189–1197.

    Article  MathSciNet  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N. (2014). A note on the asymptotic behavior of the Bernstein estimator of the copula density. Journal of Multivariate Analysis, 124, 480–487.

    Article  MathSciNet  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N. (2016). Bernstein estimation for a copula derivative with application to conditional distribution and regression functionals. Test, 25, 351–374.

    Article  MathSciNet  Google Scholar 

  • Janssen, P., Swanepoel, J., Veraverbeke, N. (2017). Smooth copula-based estimation of the conditional density function with a single covariate. Journal of Multivariate Analysis, 159, 39–48.

    Article  MathSciNet  Google Scholar 

  • Leblanc, A. (2012). On estimating distribution functions using Bernstein polynomials. Annals of the Institute of Statistical Mathematics, 64, 919–943.

    Article  MathSciNet  Google Scholar 

  • Li, Y., Lin, X. (2006). Semiparametric normal transformation models for spatially correlated survival data. Journal of the American Statistical Association, 101, 591–603.

    Article  MathSciNet  Google Scholar 

  • Li, Y., Prentice, R. L., Lin, X. (2008). Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data. Biometrika, 95, 947–960.

    Article  MathSciNet  Google Scholar 

  • Müller, H. G., Wang, J.-L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 50, 61–76.

    Article  MathSciNet  Google Scholar 

  • Nan, B., Lin, X., Lisabeth, L. D., Harlow, S. D. (2006). Piecewise constant cross-ratio estimation for association of age at a marker event and age at menopause. Journal of the American Statistical Association, 101, 65–77.

    Article  MathSciNet  Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas. 2nd ed. New York: Springer.

  • Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society Series B—Statistical Methodology, 44, 414–422.

    MathSciNet  MATH  Google Scholar 

  • Oakes, D. (1986). Semi-parametric inference in a model for association in bivariate survival data. Biometrika, 73, 353–361.

    MathSciNet  MATH  Google Scholar 

  • Oakes, D. (1989). Bivariate survival data induced by frailties. Journal of the American Statistical Association, 84, 487–493.

    Article  MathSciNet  Google Scholar 

  • Omelka, M., Gijbels, I., Veraverbeke, N. (2009). Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing. Annals of Statistics, 37, 3023–3058.

    Article  MathSciNet  Google Scholar 

  • Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American Statistical Association, 74, 105–121.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Cline, D. H. (1994). Bias reduction in kernel density estimation by smoothed empirical transformations. Annals of Statistics, 22, 185–210.

    Article  MathSciNet  Google Scholar 

  • Sancetta, A., Satchell, S. (2004). The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Economic Theory, 20, 535–562.

    MathSciNet  MATH  Google Scholar 

  • Sen, B., Xu, G. (2015). Model based bootstrap methods for interval censored data. Computational Statistics and Data Analysis, 81, 121–129.

    Article  MathSciNet  Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’institut de statistique de l’Université de Paris, 8, 229–231.

    MathSciNet  MATH  Google Scholar 

  • Spierdijk, L. (2008). Nonparametric conditional hazard rate estimation: A local linear approach. Computational Statistics and Data Analysis, 52, 2419–2434.

    Article  MathSciNet  Google Scholar 

  • Swanepoel, J. W. H., van Graan, F. C. (2005). A new kernel distribution function estimator based on a nonparametric transformation of the data. Scandinavian Journal of Statistics, 32, 551–562.

    Article  MathSciNet  Google Scholar 

  • Van Keilegom, I., Veraverbeke, N. (2001). Hazard rate estimation in nonparametric regression with censored data. Annals of the Institute of Statistical Mathematics, 53, 730–745.

    Article  MathSciNet  Google Scholar 

  • Viswanathan, B., Manatunga, A. (2001). Diagnostic plots for assessing the frailty distribution in multivariate survival data. Lifetime Data Analysis, 7, 143–155.

    Article  MathSciNet  Google Scholar 

  • Wienke, A. (2010). Frailty models in survival analysis. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two referees for their valuable comments that have led to an improved version of the manuscript. The work was supported by the IAP Research Network P7/13 of the Belgian State (Belgian Science Policy). The third author thanks the National Science Foundation of South Africa for financial support. The fourth author is also extraordinary professor at the North-West University, Potchefstroom, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Abrams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1068 KB)

Appendix: Proofs of Theorems 1–3

Appendix: Proofs of Theorems 13

In this appendix, we present the proofs of Theorems 13 in the main text.

Proof of Theorem 1

$$\begin{aligned} \begin{array}{ll} &{}\widehat{\lambda }_m(t_1 \mid T_2 = t_2) - \lambda (t_1 \mid T_2 = t_2)\\ &{}\quad = \displaystyle \frac{1}{b_n} \displaystyle \int \left[ \widehat{\varLambda }_m (t_1 - b_n u\mid T_2 = t_2) - \varLambda (t_1 - b_n u\mid T_2 = t_2)\right] {\mathrm {d}}K_0(u)\\ &{}\qquad + \displaystyle \frac{1}{b_n} \displaystyle \int \varLambda (t_1 - b_nu \mid T_2 = t_2) {\mathrm {d}}K_0(u) - \lambda (t_1 \mid T_2 = t_2)\\ &{}\quad = (A) + (B). \end{array} \end{aligned}$$

The non-random term (B) equals

$$\begin{aligned} (B) = \displaystyle \frac{1}{2}b_n^2 \lambda '' (t_1 \mid T_2 = t_2) \mu _2(K_0) + o(b_n^2) \end{aligned}$$
(11)

where \(\mu _2(K_0) = \displaystyle \smallint t^2 K_0(t) {\mathrm {d}}t\). This is because \(\lambda (t_1 \mid T_2 = t_2)\) is twice continuously differentiable with respect to \(t_1\).

For the integrand in (A), we first note that

$$\begin{aligned} \begin{array}{ll} &{}\widehat{\varLambda }_m(t_1 \mid T_2 = t_2) - \varLambda (t_1 \mid T_2 = t_2)\\ &{}\quad = \displaystyle \mathop \int \nolimits _0^{t_1} \displaystyle \frac{{\mathrm {d}}\widehat{F}_{t_2}(s)}{1-\widehat{F}_{t_2}(s)} - \displaystyle \mathop \int \nolimits _0^{t_1} \displaystyle \frac{{\mathrm {d}}F_{t_2}(s)}{1-F_{t_2}(s)} + O\left( \displaystyle \frac{m}{n}\right) \ \text{ a.s. } \end{array} \end{aligned}$$

Indeed, for n sufficiently large,

$$\begin{aligned} \left| \displaystyle \mathop \int \nolimits _0^{t_1} \displaystyle \frac{{\mathrm {d}}\widehat{F}_{t_2}(s)}{1-\widehat{F}_{t_2}(s-)} - \displaystyle \mathop \int \nolimits _0^{t_1} \displaystyle \frac{{\mathrm {d}}\widehat{F}_{t_2}(s)}{1- \widehat{F}_{t_2}(s)}\right| \le \displaystyle \frac{4}{[1-F_{t_2}(t_1)]^2} O\left( \displaystyle \frac{m}{n}\right) \end{aligned}$$

because the maximal jump of \(\widehat{F}_{t_2}(\cdot )\) is \(O\left( \displaystyle \frac{m}{n}\right) \) a.s. (see Janssen et al. 2016) and because \(\widehat{F}_{t_2} (t_1)\) converges to \(F_{t_2}(t_1)\). Hence, the term (A) can be written as

$$\begin{aligned} (A) = \displaystyle \frac{1}{b_n} \displaystyle \mathop \int \nolimits _{t_1-b_nL}^{t_1+b_nL} \ln \left[ \displaystyle \frac{1-\widehat{F}_{t_2}(s)}{1-F_{t_2}(s)}\right] {\mathrm {d}}K_0 \left( \displaystyle \frac{t_1-s}{b_n}\right) + O\left( \displaystyle \frac{m}{nb_n}\right) \ \text{ a.s. } \end{aligned}$$

By the mean value theorem, we obtain that

$$\begin{aligned} \ln \left[ \displaystyle \frac{1-\widehat{F}_{t_2} (s)}{1-F_{t_2}(s)}\right] = - \displaystyle \frac{\widehat{F}_{t_2} (s) - F_{t_2}(s)}{1-F_{t_2}(s)} - \displaystyle \frac{1}{2} \displaystyle \frac{[\widehat{F}_{t_2} (s) - F_{t_2}(s)]^2}{[1- \theta _n (s)]^2} \end{aligned}$$

for some \(\theta _n(s)\) between \(F_{t_2}(s)\) and \(\widehat{F}_{t_2}(s)\). Hence,

$$\begin{aligned} (A)= & {} \displaystyle \frac{1}{b_n} \displaystyle \mathop \int \nolimits _{-L}^L \displaystyle \frac{\widehat{F}_{t_2} (t_1 - b_nu) - F_{t_2} (t_1 - b_n u)}{1-F_{t_2} (t_1 - b_n u)} {\mathrm {d}}K_0(u) \nonumber \\&+ \ R_n (t_1, t_2) + O\left( \displaystyle \frac{m}{nb_n}\right) \ \text{ a.s. }, \end{aligned}$$
(12)

where

$$\begin{aligned} R_n(t_1,t_2) = \displaystyle \frac{1}{2b_n} \displaystyle \mathop \int \nolimits _{-L}^L \displaystyle \frac{[\widehat{F}_{t_2} (t_1 - b_nu) - F_{t_2} (t_1 - b_n u)]^2}{[1-\theta _n (t_1 - b_nu)]^2} {\mathrm {d}}K_0(u). \end{aligned}$$

From Theorem 3 of Janssen et al. (2016) and the first part of the proof of Lemma 7 available in Electronic Supplementary Material provided by Janssen et al. (2016), we conclude that

$$\begin{aligned}&\sup \limits _{s} | \widehat{F}_{t_2}(s) - F_{t_2}(s) | = O\left( m^{1/4}n^{-1/2}(\ln n)^{1/2}\right) + O(n^{-1/2}(\ln n)^{1/2} + m^{-1} \nonumber \\&\qquad +\ m^{1/2}n^{-3/4}(\ln n)^{1/2}(\ln \ln n)^{1/4} + m^{13/12}n^{-1}(\ln n)^{1/2}(\ln \ln n)^{1/2})\ {\text{ a.s. }} \nonumber \\&\quad = O\left( m^{1/4}n^{-1/2}(\ln n)^{1/2}\right) \ \text{ a.s. }, \end{aligned}$$
(13)

by applying the assumptions in condition (d) of the theorem.

Since we assume that \(K_0\) is a continuous density function of bounded variation, there exist two non-decreasing bounded and continuous functions \(K_{01}\) and \(K_{02}\) such that \(K_0(u) = K_{01}(u) - K_{02}(u)\). Assume that \(K_{01}\) and \(K_{02}\) are supported on \([-L,L_1]\) and \([L_1, L]\), respectively, for some \(-L \le L_1 \le L\). Hence, \(K_{01}(-L) = K_{02}(-L) = 0 = K_{01}(L) = K_{02}(L)\) and \(K_{01}(L_1) = -K_{02}(L_1)\). Therefore,

$$\begin{aligned} |R_n(t_1,t_2)|\le & {} \displaystyle \frac{1}{2b_n} \displaystyle \mathop \int \nolimits _{-L}^{L_1} \displaystyle \frac{[\widehat{F}_{t_2} (t_1 - b_n u) - F_{t_2} (t_1 - b_nu)]^2}{[1-\theta _n (t_1 - b_n u)]^2} {\mathrm {d}}K_{01}(u)\\&+ \displaystyle \frac{1}{2b_n} \displaystyle \mathop \int \nolimits _{L_1}^L \displaystyle \frac{[\widehat{F}_{t_2} (t_1 - b_n u) - F_{t_2} (t_1-b_n u)]^2}{[1-\theta _n (t_1 - b_n u)]^2} {\mathrm {d}}K_{02}(u). \end{aligned}$$

Furthermore, since \(\sup \limits _s |\widehat{F}_{t_2}(s) - F_{t_2} (s)| \rightarrow 0\) a.s., we have that \(\sup \limits _s |\theta _n(s) - F_{t_2}(s)| \rightarrow 0\) a.s.; hence, for some constant \(C > 0\),

$$\begin{aligned} |R_n(t_1,t_2)|\le & {} \displaystyle \frac{2C}{b_n[1-F_{t_2} (t_1)]^2} \left[ \sup \limits _s |\widehat{F}_{t_2}(s) - F_{t_2} (s)|\right] ^2 K_{01} (L_1)\\= & {} O\left( \displaystyle \frac{m^{1/2}}{nb_n} \ln n \right) \ \text{ a.s. }, \end{aligned}$$

by using (13). Therefore, under the conditions in (d) we conclude that

$$\begin{aligned} (n m^{-1/2} b_n)^{1/2} R_n(t_1, t_2) \rightarrow 0\ \text{ a.s. } \end{aligned}$$
(14)

By the mean value theorem, the first term in the expression of (A) given in (12) becomes

$$\begin{aligned}&\frac{1}{b_n \left[ 1 - F_{t_2}(t_1)\right] }\mathop \int \nolimits _{-L}^{L} \left[ \widehat{F}_{t_2}(t_1 - b_n u) - F_{t_2}(t_1 - b_n u)\right] {\mathrm {d}}K_0(u)\nonumber \\&\qquad +\ \mathop \int \nolimits _{-L}^{L} \frac{u\left[ \widehat{F}_{t_2}(t_1 - b_n u) - F_{t_2}(t_1 - b_n u)\right] f_{t_2}\left[ \theta (u)\right] }{\left\{ 1 - F_{t_2}\left[ \theta (u)\right] \right\} ^{2}} {\mathrm {d}}K_0(u) \nonumber \\&\quad =: (A_{11}) + \tilde{R}_n(t_1, t_2), \end{aligned}$$
(15)

for some \(\theta (u)\) between \(t_1\) and \(t_1 - b_n u\).

As above, we have that for some constant \(C > 0\),

$$\begin{aligned} |\tilde{R}_n(t_1,t_2)|\le & {} \displaystyle \frac{Cf_{t_2}(t_1)}{[ 1- F_{t_2} (t_1)]^2} \left[ \sup \limits _s |\widehat{F}_{t_2}(s) - F_{t_2} (s)|\right] \mathop \int \nolimits _{-L}^{L} |u| {\mathrm {d}}\left[ K_{01}(u) + K_{02}(u)\right] \\= & {} O\left( \displaystyle m^{1/4} n^{-1/2} (\ln n)^{1/2} \right) \ \text{ a.s. } \end{aligned}$$

Under the conditions in (d), we have

$$\begin{aligned} (n m^{-1/2} b_n)^{1/2} \tilde{R}_n(t_1, t_2) \rightarrow 0\ \text{ a.s. } \end{aligned}$$
(16)

For \((A_{11})\) in Eq. (15), we write

$$\begin{aligned} (A_{11})= & {} \frac{1}{b_n \left[ 1 - F_{t_2}(t_1)\right] } \mathop \int \nolimits _{-L}^{L} \left\{ \widehat{F}_{t_2}(t_1 - b_n u) - E[\widehat{F}_{t_2}(t_1 - b_n u)]\right\} {\mathrm {d}}K_0(u)\\&+\ \frac{1}{b_n \left[ 1 - F_{t_2}(t_1)\right] } \mathop \int \nolimits _{-L}^{L} \left\{ E[\widehat{F}_{t_2}(t_1 - b_n u)] - F_{t_2}(t_1 - b_n u) \right\} {\mathrm {d}}K_0(u) \\=: & {} (A_{111}) + (A_{112}). \end{aligned}$$

For \((A_{112})\), which contributes to the bias, note that \(E[\widehat{F}_{t_2}(t_1 - b_n u)] - F_{t_2}(t_1 - b_n u) = -\{E[\widehat{S}_{t_2}(t_1 - b_n u)] - S_{t_2}(t_1 - b_n u)\}\). In line with Remark 3 in Janssen et al. (2016), we have

$$\begin{aligned} E[\widehat{S}_{t_2}(t_1 - b_n u)] - S_{t_2}(t_1 - b_n u) = -\frac{1}{2}m^{-1}b\left[ S_1(t_1 - b_n u), S_2(t_2)\right] + o(m^{-1}), \end{aligned}$$

where

$$\begin{aligned} b(u,v) = (1 - 2v) C^{(2,2)}(u,v) + u(1-u)C^{(1,1,2)}(u,v) + v(1-v)C^{(2,2,2)}(u,v). \end{aligned}$$

Using partial integration, we obtain that

$$\begin{aligned} (A_{112}) = \frac{1}{2}m^{-1}\phi (t_1,t_2) + o(m^{-1}), \end{aligned}$$
(17)

where

$$\begin{aligned} \phi (t_1,t_2) = \frac{b^{(1)}\left[ S_{1}(t_1), S_{2}(t_2)\right] }{1 - F_{t_2}(t_1)}f_1(t_1), \end{aligned}$$

with \(b^{(1)}(u,v) = \frac{\partial }{\partial u}b(u,v)\). For the first term we have, after partial integration,

$$\begin{aligned} (A_{111}) = \frac{1}{1 - F_{t_2}(t_1)}\left\{ \widehat{f}_{t_2}(t_1) - E[\widehat{f}_{t_2}(t_1)]\right\} , \end{aligned}$$
(18)

where \(\widehat{f}_{t_2}(t_1)\) is precisely the Bernstein estimator for a conditional density function studied in Janssen et al. (2017).

The proof of the theorem follows directly from (11)–(18) and the Theorem in Janssen et al. (2017) by simply replacing Y by \(T_1\) and X by \(T_2\) in the aforementioned paper.

Also note that the term \(\frac{1}{2}m^{-1}\phi (t_1,t_2)\) in the bias vanishes after multiplication with \((n m^{-1/2} b_n)^{1/2}\). This is because \((n m^{-1/2} b_n)^{1/2} m^{-1} \le n^{1/2} m^{-5/4} b_n^{-1/2} \rightarrow 0\) by the first relation in (d). This proves Theorem 1. \(\square \)

Proof of Theorem 2

Write

$$\begin{aligned}&\widehat{\lambda }_m(t_1 \mid T_2> t_2) - \lambda (t_1 \mid T_2> t_2)\\&\quad = \displaystyle \frac{1}{b_n} \displaystyle \int \left[ \widehat{\varLambda }_m(t_1 - b_n u \mid T_2> t_2) - \varLambda (t_1 - b_nu \mid T_2> t_2)\right] {\mathrm {d}}K_0(u)\\&\qquad + \frac{1}{b_n} \displaystyle \int \varLambda (t_1 - b_nu \mid T_2> t_2) dK_0(u) - \lambda (t_1 \mid T_2 > t_2)\\&\quad = (\widetilde{A}) + (\widetilde{B}). \end{aligned}$$

For the non-random term \((\widetilde{B})\) we have, similar to (11),

$$\begin{aligned} (\widetilde{B}) = O(b_n^2). \end{aligned}$$
(19)

For \((\widetilde{A})\), we perform analogous operations as we did in the proof of Theorem 1. This gives, in analogy with (12),

$$\begin{aligned} (\widetilde{A})= & {} \displaystyle \frac{1}{b_n} \displaystyle \mathop \int \nolimits _{-L}^L \displaystyle \frac{C_{m,n} [S_{1n} (t_1-b_nu), S_{2n}(t_2)] - C[S_1 (t_1 - b_nu), S_2(t_2)]}{C[S_1(t_1 - b_nu), S_2(t_2)]} {\mathrm {d}}K_0(u)\nonumber \\&+ \ \widetilde{R}_n (t_1, t_2) + O\left( \displaystyle \frac{m^{1/2}}{nb_n}\right) \ \text{ a.s. }, \end{aligned}$$
(20)

where

$$\begin{aligned} \widetilde{R}_n (t_1,t_2) = \displaystyle \frac{1}{2b_n} \displaystyle \mathop \int \nolimits _{-L}^L \displaystyle \frac{\{C_{m,n} [S_{1n} (t_1 - b_nu), S_{2n}(t_2)] - C[S_1(t_1-b_nu), S_2(t_2)]\}^2}{[1-\widetilde{\theta }_n(t_1-b_nu)]^2} {\mathrm {d}}K_0(u) \end{aligned}$$

for some \(\widetilde{\theta }_n(t_1-b_nu)\) between \(C_{m,n} [S_{1n} (t_1-b_nu), S_{2n}(t_2)]\) and \(C[S_1 (t_1- b_nu), S_2(t_2)]\). The \(O\left( \displaystyle \frac{m^{1/2}}{nb_n}\right) \) term in (20) comes from the replacement of \(S_{1n}(s-)\) by \(S_{1n}(s)\).

Indeed, for n sufficiently large, we have for some constant \(M >0\):

$$\begin{aligned} \begin{array}{ll} &{}\left| \displaystyle \mathop \int \nolimits _0^{t_1} \left\{ \displaystyle \frac{1}{C_{m,n} [S_{1n} (s-), S_{2n}(t_2)]} - \displaystyle \frac{1}{C_{m,n} [S_{1n}(s), S_{2n}(t_2)]}\right\} d_s C_{m,n} [S_{1n}(s), S_{2n}(t_2)]\right| \\ \\ &{}\quad \le \displaystyle \frac{M}{C^2[S_1(t_1), S_2(t_2)]}\sup \limits _s \sum \limits _{k=1}^{m} \sum \limits _{\ell = 1}^{m} C_n \left( \displaystyle \frac{k}{m},\displaystyle \frac{\ell }{m}\right) \displaystyle \frac{P_{m,\ell } [S_{2n}(t_2)]}{n}\left| P'_{m,k} \left( S_{1n}(s) + \frac{1}{n}\right) \right| \\ \\ &{}\quad = O\left( \displaystyle \frac{m^{1/2}}{n}\right) \ \text{ a.s., } \text{ using } \text{ Lemma } \text{1 } \text{ in }\, Janssen et al. (2014). \end{array} \end{aligned}$$

Using that \(C_{m,n}[S_{1n}(s), S_{2n}(t_2)] \rightarrow C[S_1(s), S_2(t_2)]\) a.s. and the fact that \(K_0\) is of bounded variation we can make an argument completely analogous to the one used for \(R_n(t_1,t_2)\) in (12). This gives the following bound for \(\widetilde{R}_n(t_1,t_2)\):

$$\begin{aligned} \widetilde{R}_n(t_1,t_2) = O\left( \displaystyle \frac{1}{b_n}\left\{ \sup \limits _s \mid C_{m,n} [S_{1n} (s), S_{2n}(t_2)] - C[S_1(s), S_2(t_2)]\mid \right\} ^2\right) \ \text{ a.s. } \end{aligned}$$

Now,

$$\begin{aligned} \begin{array}{l} \mid C_{m,n} [S_{1n}(s)), S_{2n}(t_2)] - C[S_1(s), S_2(t_2)]\mid \\ \quad \le \,\displaystyle \mid C_{m,n} [S_{1n} (s), S_{2n}(t_2)] - C[S_{1n}(s), S_{2n}(t_2)]\mid \\ \qquad + \mid S_{1n}(s) - S_1(s)\mid + \mid S_{2n} (s) - S_2(s)\mid \end{array} \end{aligned}$$

by the Lipschitz continuity of C (see Nelsen 2006).

The supremum of the first term on the right-hand side is \(O(n^{-1/2} (\ln \ln n)^{1/2} + m^{-1/2})\) a.s. (see the proof of Theorem 1 in Janssen et al. (2012)) and the supremum of the other two terms is \(O(n^{-1/2} (\ln \ln n)^{1/2})\) a.s. So the bound for \(\widetilde{R}_n(t_1,t_2)\) is

$$\begin{aligned} O\left( \displaystyle \frac{n^{-1} \ln \ln n}{b_n} + \displaystyle \frac{m^{-1}}{b_n}\right) \ \text{ a.s. } \end{aligned}$$

Combining this with (19) and (20), we obtain

$$\begin{aligned}&\widehat{\lambda }_m (t_1 \mid T_2> t_2) - \lambda (t_1 \mid T_2 > t_2)\\&\quad = \displaystyle \frac{1}{b_n} \displaystyle \mathop \int \nolimits _{-L}^L \displaystyle \frac{C_{m,n} [S_{1n} (t_1 - b_n u), S_{2n}(t_2)] - C[S_1 (t_1-b_nu), S_2(t_2)]}{C[S_1 (t_1 - b_nu), S_2(t_2)]} {\mathrm {d}}K_0(u)\\&\qquad + \ O \left( \displaystyle \frac{n^{-1}}{b_n} \ln \ln n + \displaystyle \frac{m^{-1}}{b_n} + \displaystyle \frac{m^{1/2}}{nb_n} + b_n^2\right) \ \text{ a.s. } \end{aligned}$$

For the first term in the right-hand side, we write

$$\begin{aligned}&C_{m,n} [S_{1n} (t_1), S_{2n}(t_2)] - C[S_1(t_1), S_2(t_2)]\\&\quad = \left\{ C_{m,n} [S_1 (t_1), S_2(t_2)] - C[S_1(t_1), S_2(t_2)]\right\} \\&\qquad + \ C_{m,n}^{(1)} [\theta _{1n} (t_1), \theta _{2n}(t_2)] \left[ S_{1n} (t_1) - S_1(t_1)\right] \\&\qquad + \ C_{m,n}^{(2)} [\theta _{1n} (t_1), \theta _{2n}(t_2)] \left[ S_{2n} (t_2) - S_2(t_2)\right] , \end{aligned}$$

with \((\theta _{1n} (t_1), \theta _{2n} (t_2))\) denoting an intermediate point between \((S_{1n} (t_1), S_{2n}(t_2))\) and \((S_1(t_1), S_2(t_2))\). Now using similar ideas as in Lemma 3 of Janssen et al. (2012) and the convergence rate of the Bernstein approximation given in (5) of the same paper, we obtain

$$\begin{aligned}&C_{m,n}[S_{1n}(t_1), S_{2n}(t_2)] - C[S_1(t_1), S_2(t_2)]\\&\quad = \displaystyle \frac{1}{n} \sum \limits _{i=1}^n Y_{mi} [S_1(t_1), S_2(t_2)] + O_P (m^{-1}) + o_P (n^{-1/2}) \end{aligned}$$

where the \(Y_{m} (u_1,u_2)\) are independent zero mean random variables which are bounded. With this

$$\begin{aligned}&\widehat{\lambda }_{m}(t_1 \mid T_2> t_2) - \lambda (t_1 \mid T_2 > t_2)\\&\quad = \sum \limits _{i=1}^n W_{in} + O_P \left( \displaystyle \frac{n^{-1}}{b_n} \ln \ln n + \displaystyle \frac{m^{-1}}{b_n} + \displaystyle \frac{m}{nb_n} + b_n^2 + \displaystyle \frac{n^{-1/2}}{b_n}\right) , \end{aligned}$$

where

$$\begin{aligned} W_{in} = \displaystyle \frac{1}{nb_n} \displaystyle \int \displaystyle \frac{Y_{mi} [S_1(t_1-b_nu),S_2(t_2)]}{C[S_1(t_1-b_nu),S_2(t_2)]} {\mathrm {d}}K_0(u). \end{aligned}$$

Now

$$\begin{aligned} \begin{array}{ll} &{}\mathrm{Var}\left( \sum \limits _{i=1}^n W_{in}\right) = \\ \\ &{}\quad \displaystyle \int \displaystyle \int \displaystyle \frac{E\{Y_{mi} [S_1(t_1 - b_nu_1), S_2(t_2)] Y_{mi} [S_1(t_1-b_n u_2), S_2(t_2)]\}}{nb_n^2C[S_1 (t_1 - b_n u_1), S_2(t_2)] C[S_1(t_1-b_nu_2), S_2(t_2)]} {\mathrm {d}}K_0 (u_1) {\mathrm {d}}K_0(u_2)\\ \\ &{}\quad = O\left( \displaystyle \frac{1}{nb_n^2}\right) \end{array} \end{aligned}$$

by the boundedness of the \(Y_{mi}\) and the fact that \(K_0\) is of bounded variation.

Hence,

$$\begin{aligned} \sum \limits _{i=1}^n W_{in} = O_P\left( \displaystyle \frac{n^{-1/2}}{b_n}\right) \end{aligned}$$

and

$$\begin{aligned}&\widehat{\lambda }_m (t_1 \mid T_2> t_2) - \lambda (t_1 \mid T_2 > t_2)\\&\quad = O_P\left( \displaystyle \frac{n^{-1/2}}{b_n} + \displaystyle \frac{m^{-1}}{b_n} + \displaystyle \frac{m^{1/2}}{nb_n} + b_n^2\right) . \end{aligned}$$

The imposed conditions in (d) of Theorem 1 and the extra condition \(m^{1/2} b_n \rightarrow \infty \) imply that all the terms in the right-hand side vanish after multiplication with \((nm^{-1/2} b_n)^{1/2}\). \(\square \)

Proof of Theorem 3

Linearization of the ratio gives that \(\widehat{\theta }_m(t_1,t_2) - \theta (t_1, t_2)\) has the same limiting distribution as

$$\begin{aligned} \displaystyle \frac{1}{\lambda (t_1 \mid T_2> t_2)} [ \widehat{\lambda }_m(t_1 \mid T_2 = t_2) - \lambda (t_1 \mid T_2 = t_2)]\\\\ - \displaystyle \frac{\lambda (t_1 \mid T_2 = t_2)}{\lambda ^2(t_1 \mid T_2> t_2)} [\widehat{\lambda }_m (t_1 \mid T_2> t_2) - \lambda (t_1 \mid T_2 > t_2)]. \end{aligned}$$

Multiplication with \((nm^{-1/2} b_n)^{1/2}\) gives that the second term is \(o_P(1)\) (by Theorem 2) and that the first term is asymptotically normal (by Theorem 1). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrams, S., Janssen, P., Swanepoel, J. et al. Nonparametric estimation of the cross ratio function. Ann Inst Stat Math 72, 771–801 (2020). https://doi.org/10.1007/s10463-019-00709-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00709-3

Keywords

Navigation