Skip to main content
Log in

Socio-economic research on genetically modified crops: a study of the literature

  • Published:
Agriculture and Human Values Aims and scope Submit manuscript

Abstract

The importance of socio-economic impacts (SEI) from the introduction and use of genetically modified (GM) crops is reflected in increasing efforts to include them in regulatory frameworks. Aiming to identify and understand the present knowledge on SEI of GM crops, we here report the findings from an extensive study of the published international scientific peer-reviewed literature. After applying specified selection criteria, a total of 410 articles are analysed. The main findings include: (i) limited empirical research on SEI of GM crops in the scientific literature; (ii) the main focus of the majority of the published research is on a restricted set of monetary economic parameters; (iii) proportionally, there are very few empirical studies on social and non-monetary economic aspects; (iv) most of the research reports only short-term findings; (v) the variable local contexts and conditions are generally ignored in research methodology and analysis; (vi) conventional agriculture is the commonly used comparator, with minimal consideration of other substantially different agricultural systems; and (vii) there is the overall tendency to frame the research upon not validated theoretical assumptions, and to over-extrapolate small-scale and short-term specific results to generalized conclusions. These findings point to a lack of empirical and comprehensive research on SEI of GM crops for possible use in decision-making. Broader questions and improved methodologies, assisted by more rigorous peer-review, will be required to overcome current research shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

GM:

Genetically modified

GMOs:

Genetically modified organisms

R&D:

Research and development

SE:

Socio-economic

SEI:

Socio-economic impact(s)

References

  • Adi, B. 2006. Intellectual property rights in biotechnology and the fate of poor farmers’ agriculture. Journal of World Intellectual Property 9 (1): 91–112.

    Article  Google Scholar 

  • Altieri, M. A. 2005. The myth of coexistence: Why transgenic crops are not compatible with agroecologically-based systems of production. Bulletin of Science, Technology & Society 25 (4): 361–371.

    Article  Google Scholar 

  • Altieri, M. A., and C. Nicholls. 2003. Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72 (2): 203–211.

    Article  Google Scholar 

  • Anderson, K., and L. A. Jackson. 2005. Some implications of GM food technology policies for Sub-Saharan Africa. Journal of African Economies 14 (3): 385–410.

    Article  Google Scholar 

  • Areal, F. J., L. Riesgo, and E. Rodríguez-Cerezo. 2013. Economic and agronomic impact of commercialized GM crops: A meta-analysis. Journal of Agricultural Sciences 153: 7–33.

    Google Scholar 

  • Arunachalam, V., and S. B. Ravi. 2003. Conceived conclusions in favour of GM cotton? A riposte to a paper in Science. Current Science 85 (8): 1117–1119.

    Google Scholar 

  • Asante, D. K. 2008. Genetically modified food. The dilemma of Africa. African Journal of Biotechnology 7 (9): 1204–1211.

    Google Scholar 

  • Asdal, K., and I. Moser. 2012. Experiments in context and contexting. Science, Technology & Human Values 37 (4): 291–306.

    Article  Google Scholar 

  • Barwale, F. B., V. R. Gadwal, U. Zehr, and B. Zehr. 2004. Prospects for Bt cotton technology in India. AgBioForum 7 (1–2): 23–26.

    Google Scholar 

  • BCH-CBD (Biosafety Clearing House of the Cartagena Protocol of Biosafety). Living Modified Organisms (LMO) Registry. 2016. http://bch.cbd.int/database/lmo-registry/. Accessed 14 May 2016.

  • Benbrook, C. M. 2012. Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-24-2.

    Google Scholar 

  • Bereano, P. 2012. Why the US should support full implementation of Article 26, the consideration of socio-economic consequences of LMOs. ECO (43). Catacora: CBD Alliance.

    Google Scholar 

  • Berger, G. U., and D. P. Braga. 2009. Report on Environmental and Food Biosafety of Soybean MON 87701 x MON 89788. Sao Paulo: Monsanto do Brazil.

    Google Scholar 

  • Binimelis, R. 2008. Coexistence of plants and coexistence of farmers: Is an individual choice possible? Journal of Agricultural and Environmental Ethics 21 (5): 437–457.

    Article  Google Scholar 

  • Binimelis, R., and A. I. Myhr. 2016. Inclusion and implementation of socio-economic considerations in GMO regulations: Needs and recommendations. Sustainability. https://doi.org/10.3390/su8010062.

    Google Scholar 

  • Bouis, H. E. 2002. Three criteria for establishing the usefulness of biotechnology for reducing micronutrient malnutrition. Food and Nutrition Bulletin 23 (4): 351–353.

    Article  Google Scholar 

  • Bouis, H. E. 2007. The potential of genetically modified food crops to improve human nutrition in developing countries. Journal of Development Studies 43 (1): 79–96.

    Article  Google Scholar 

  • Bouis, H. E., and R. M. Welch. 2010. Biofortification: A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: S20–S21.

    Article  Google Scholar 

  • Brooks, S. 2005. Biotechnology and the politics of truth: From the green revolution to an evergreen revolution. Sociologia Ruralis 45 (4): 360–379.

    Article  Google Scholar 

  • Bryant, K. J., R. L. Nichols, C. T. Allen, N. R. Benson, F. M. Bourland, L. D. Earnest, M. S. Kharboutli, K. Smith, and E. P. Webster. 2003. Transgenic cotton cultivars: An economic comparison in Arkansas. International Journal of Cotton Science 7: 194–204.

    Google Scholar 

  • Callon, M., and J. Law. 1982. On interests and their transformation: Enrolment and counter-enrolment. Social Studies of Science 12 (4): 615–625.

    Article  Google Scholar 

  • Catacora-Vargas, G. 2012. Socio-economic considerations under the Cartagena Protocol on Biosafety: Insights for effective implementation. Asian Biotechnology and Development Review 14 (3): 1–17.

    Google Scholar 

  • Catacora-Vargas, G., P. Galeano, S. Agapito-Tenfen, D. Aranda, T. Palau, and R. O. Nodari. 2012. Soybean production in the Southern Cone of the Americas: Update on land and pesticide use. Cochabamba: GenØk/UFSC/REDES-AT/BASE-Is.

    Google Scholar 

  • Christou, P., and R. M. Twyman. 2004. The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews 17 (1): 23–42.

    Article  Google Scholar 

  • COGEM (Commissie Genetishe Modificatie). 2009. Socio-economic aspects of GMO’s. Building blocks for an EU sustainability assessment of genetically modified crops. Report CGM/090929–01. http://www.cogem.net/index.cfm/en/publications/publicatie/socio-economic-aspects-of-gmo-s Accessed 6 Mar 2016.

  • Danish Council of Ethics. 2012. Report on bioenergy, food production, and ethics in a globalised world. Copenhagen: Danish Council of Ethics.

    Google Scholar 

  • DFID (United Kingdom Department for International Development). 2014. Economic development for shared prosperity and poverty reduction: A strategic framework. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/276859/Econ-development-strategic-framework.pdf Accessed 15 Aug 2016.

  • Dibden, J., D. Gibbs, and C. Cocklin. 2013. Framing GM crops as a food security solution. Journal of Rural Studies 29: 59–70.

    Article  Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (GMO). 2012. Scientific opinion on application (EFSA-GMO-NL-2009–73) for the placing on the market of insect-resistant and herbicide tolerant genetically modified soybean MON 87701 × MON 89788 for food and feed uses, import and processing under Regulation (EC) No. 182. Parma: EFSA.

    Google Scholar 

  • Ely, A., P. Van Zwanenberg, and A. Stirling. 2014. Broadening out and opening up technology assessment: Approaches to enhance international development, co-ordination and democratisation. Research Policy 43 (3): 505–518.

    Article  Google Scholar 

  • Ervin, D. E., and R. Jussaume. 2014. Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Science 62: 403–414.

    Article  Google Scholar 

  • Ervin, D. E., and R. Welsh. 2006. Environmental effects of genetically modified crops: Differentiated risk assessment and management. In Regulating Agricultural Biotechnology: Economics and Policy, eds. R. E. Just, E. Julian, M. Alston, and D. Zilberman, 301–326. Boston: Springer.

    Chapter  Google Scholar 

  • Ervin, D. E., L. L. Glenna, and R. A. Jussaume Jr. 2011. The theory and practice of genetically engineered crops and agricultural sustainability. Sustainability 3 (6): 847–874.

    Article  Google Scholar 

  • Espinoza-Esquivel, A. M., and G. Arrieta-Espinoza. 2007. A multidisciplinary approach directed towards the commercial release of transgenic herbicide-tolerant rice in Costa Rica. Transgenic Research 16: 541–555.

    Article  Google Scholar 

  • European Environment Council. 2008. Council conclusions on genetically modified organisms (GMOs). 2912th Environment Council Meeting. http://www.consilium.europa.eu/ueDocs/cms_Data/docs/pressData/en/envir/104509.pdf Accessed 25 Sept 2016.

  • Falck-Zepeda, J. B., and M. Gouse. 2017. Regulation of GMOs in developing countries: Why socio-economic considerations matter for decision-making. In Genetically modified organisms in developing countries, eds. A. Adenle, E. Jane, Morris, and D. J. Murphy, 91–102. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Falck-Zepeda, J. B., and P. Zambrano. 2011. Socioeconomic considerations in biosafety and biotechnology decision making: The cartagena protocol and national biosafety frameworks. Review of Policy Research. https://doi.org/10.1111/j.1541-1338.2011.00488.x.

    Google Scholar 

  • Felt, U., B. Wynne, M. Callon, M. E. Gonçalves, S. Jasanoff, M. Jepsen, P. B. Joly, Z. Konopasek, S. May, C. Neubauer, A. Rip, K. Siune, A. Stirling, and M. Tallacchini. 2007. Taking European knowledge society seriously. European Commission, Science and Governance Expert Group Report. EUR 22750. Brussels: DG Research.

    Google Scholar 

  • Fischer, K. 2016. Why new crop technology is not scale-neutral: A critique of the expectations for a crop-based African Green Revolution. Research Policy 45 (6): 1185–1194.

    Article  Google Scholar 

  • Fischer, K., E. Ekener-Petersen, L. Rydhmer, and K. E. Björnberg. 2015. Social impacts of GM crops in agriculture: A systematic literature review. Sustainability. https://doi.org/10.3390/su7078598.

    Google Scholar 

  • Flyvbjerg, B. 2005. Social science that matters. Foresight Europe 2: 38–42.

    Google Scholar 

  • Francescon, S. 2006. The impact of GMOs on poor countries: A threat to the achievement of the Millennium Development Goals? Biology Forum/Rivista di Biologia 99: 381–394.

    Google Scholar 

  • Freese, B. 2012. Comments to USDA APHIS on Draft Environmental Assessment and Draft Plant Pest Risk Assessment for Dow AgroSciences Petition (09–349-01p) for Determination of Nonregulated Status of Event DAS-68416-4: 2,4-D-and glufosinate-resistant soybean. Washington D.C.: The Center for Food Safety.

    Google Scholar 

  • Glenna, J. J., R. A. Jussaume Jr., and J. C. Dawson. 2011. How farmers matter in shaping agricultural technologies: Social and structural characteristics of wheat growers and wheat varieties. Agricultural and Human Values 28: 213–224.

    Article  Google Scholar 

  • Glenna, J. J., J. Tooker, J. R. Welsh, and D. Ervin. 2015. Intellectual property, scientific independence, and the efficacy and environmental impacts of genetically engineered crops. Rural Sociology 80 (2): 147–172 .

    Article  Google Scholar 

  • Glover, D. 2010a. Exploring the resilience of Bt cotton’s “pro-poor success story”. Development and Change 41 (6): 955–981.

    Article  Google Scholar 

  • Glover, D. 2010b. Is Bt cotton a pro-poor technology? A Review and critique of the empirical record. Journal of Agrarian Change 10 (4): 482–509.

    Article  Google Scholar 

  • Gouse, M., J. Kirsten, B. Shankar, and C. Thirtle. 2005. Bt cotton in KwaZulu Natal: Technological triumph but institutional failure. AgBiotechNet 7 (134): 1–7.

    Google Scholar 

  • Greiter, A., M. Miklau, A. Heissenberger, and H. Gaugitsch. 2011. Socio-economic aspects in the assessment of GMOs: Options for action. REP-0354. Vienna: Environment Agency Austria. http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0354.pdf Accessed 6 Mar 2016.

  • Gurian-Sherman, D. 2009. Failure to yield: Evaluating the performance of genetically engineered crops. Cambridge: Union of Concerned Scientists.

    Google Scholar 

  • Harremoës, P., D. Gee, M. MacGarvin, A. Stirling, J. Keys, B. Wynne, S. Guedes Vas, eds. 2001. Late lessons from early warnings: The precautionary principle in the 20th century. vol. 1. Copenhagen: European Environment Agency.

    Google Scholar 

  • Heinemann, J. A. 2009. Hope not hype: The future of agriculture guided by the international assessment of agricultural knowledge, science, and technology for development. Penang: TWN.

    Google Scholar 

  • Heinemann, J. A., M. Massaro, D. S. Coray, S. Agapito-Tenfen, and J. D. Wen. 2014. Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability 1: 71–88.

    Article  Google Scholar 

  • Herrero, A., F. Wickson, and R. Binimelis. 2015. Seeing GMOs from a systems perspective: The need for comparative cartographies of agri/cultures for sustainability assessment. Sustainability 7 (8): 11321–11344.

    Article  Google Scholar 

  • Hilbeck, A., T. Lebrecht, R. Vogel, J. A. Heinemann, and R. Binimelis. 2013. Farmer’s choice of seeds in four EU countries under different levels of GM crop adoption. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-25-12.

    Google Scholar 

  • Hobart, M., ed. 1993. An anthropological critique of development: The growth of ignorance. London: Routledge.

    Google Scholar 

  • IAASTD (International Assessment of Agricultural Knowledge Science and Technology for Development). 2009. Agriculture at crossroad. Global report. Washington D.C.: Island Press.

    Google Scholar 

  • Interorganizational Committee on Principles and Guidelines for Social Impact Assessment. 2003. Principles and guidelines for social impact assessment in the USA. Impact Assessment and Project Appraisal 21(3): 231–250.

    Article  Google Scholar 

  • Jansen, K., and A. Gupta. 2009. Anticipating the future: “Biotechnology for the poor” as unrealized promise? Futures 41 (7): 436–445.

    Article  Google Scholar 

  • Jasanoff, S., ed. 2004. States of knowledge: The co-production of science and the social order. London/New York: Routledge.

    Google Scholar 

  • Kaphengst, T., N. El Benni, C. Evans, R. Finger, S. Herbert, S. Morse, and N. Stupak. 2011. Final report. Assessment of the economic performance of GM crops worldwide. ENV.B.3/ETU/2009/0010. Reading: University of Reading/ETH.

    Google Scholar 

  • Kleinman, D. L., and A. J. Kinchy. 2007. Against the neoliberal steamroller? The biosafety protocol and the social regulation of agricultural biotechnologies. Agriculture and Human Values 24 (2): 195–206.

    Article  Google Scholar 

  • Klümper, W., and M. Qaim. 2014. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9 (11): e111629.

    Article  Google Scholar 

  • Knezevic, S. Z. 2007. Herbicide tolerant crops: 10 years later. Maydica 52 (3): 245–250.

    Google Scholar 

  • Kolady, D. E., and W. Lesser. 2008. Is genetically engineered technology a good alternative to pesticide use?: The case of GE eggplant in India. International Journal of Biotechnology 10 (2–3): 132–147.

    Article  Google Scholar 

  • Leach, M., I. Scoones, and A. Stirling. 2010. Dynamic sustainabilities: Technology, environment, social justice. London: Earthscan.

    Google Scholar 

  • Lélé, S. M. 1991. Sustainable development: A critical review. World Development 19 (6): 607–621.

    Article  Google Scholar 

  • Mackenzie, R., F. Burhenne-Guilmin, A. G. M. La Viña, J. D. Werksman, A. Ascencio, J. Kinderlerer, K. Kummer, and R. Tapper. 2004. An explanatory guide to the Cartagena Protocol on Biosafety. Cambridge: IUCN.

    Google Scholar 

  • Mannion, A., and S. Morse. 2013. GM crops 1996–2012: A review of agronomic, environmental and socio-economic impacts. Working Paper 04/13. Reading: University of Reading/University of Surrey.

    Google Scholar 

  • Mascarenhas, M., and L. Busch. 2006. Seeds of change: Intellectual property rights, genetically modified soybeans and seed saving in the United States. Sociologica Ruralis 46 (2): 122–138.

    Article  Google Scholar 

  • Mugo, S., H. De Groote, D. Bergvinson, M. Mulaa, J. Songa, and S. Gichuki. 2005. Developing Bt maize for resource-poor farmers: Recent advances in the IRMA project. African Journal of Biotechnology 4 (13): 1490–1504.

    Google Scholar 

  • NASEM (The National Academies of Sciences, Engineering and Medicine). 2016. Genetically engineered crops: Experiences and prospects. Washington DC: The National Academies Press.

    Google Scholar 

  • Nkwake, A. M. 2012. Working with assumptions in international development program evaluation. New York: Springer.

    Google Scholar 

  • Nordgård, L., I. Grønsberg, M. Cuhra, M. Iversen, and R. Binimelis. 2013. Assessment of the technical dossier submitted under EFSA/GMO/NL/2012/108 for approval of transgenic soy, MON 87708 x MON 89788, Monsanto Company. Tromsø: GenØk – Centre for Biosafety.

    Google Scholar 

  • NRC (National Research Council) 2010. Committee on the impact of biotechnology on farm-level economics and sustainability. The Impact of genetically engineered crops on farm sustainability in the United States. Washington, DC: National Academies Press.

    Google Scholar 

  • Park, J., I. McFarlane, R. Phipps, and G. Ceddia. 2011. The impact of the EU regulatory constraint of transgenic crops on farm income. New Biotechnology 28 (4): 396–406.

    Article  Google Scholar 

  • Pavone, V., J. Goven, and R. Guarino. 2011. From risk assessment to in-context trajectory evaluation: GMOs and their social implications. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-23-3.

    Google Scholar 

  • Pemsl, D. E., M. Voelker, L. Wu, and H. Waibel. 2011. Long-term impact of Bt cotton: Findings from a case study in China using panel data. International Journal of Agricultural Sustainability 9 (4): 508–521.

    Article  Google Scholar 

  • Phillips, P. C. 2003. Laws and limits of econometrics. The Economic Journal 113 (486): 26–52.

    Article  Google Scholar 

  • Potrykus, I. 2010. Lessons from the “Humanitarian Golden Rice” project: Regulation prevents development of public good genetically engineered crop products. New Biotechnology 27 (5): 466–472.

    Article  Google Scholar 

  • Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Management Science 64 (4): 360–365.

    Article  Google Scholar 

  • Pray, C. E., and A. Naseem. 2007. Supplying crop biotechnology to the poor: Opportunities and constraints. Journal of Development Studies 43 (1): 192–217.

    Article  Google Scholar 

  • Pretty, J. 2001. The rapid emergence of genetic modification in world agriculture: Contested risks and benefits. Environmental Conservation 28 (03): 248–262.

    Article  Google Scholar 

  • Qaim, M. 2003. Bt cotton in India: Field trial results and economic projections. World Development 31 (12): 2115–2127.

    Article  Google Scholar 

  • Qaim, M. 2005. Agricultural biotechnology adoption in developing countries. American Journal of Agricultural Economics 87 (5): 1317–1324.

    Article  Google Scholar 

  • Qaim, M., and D. Zilberman. 2003. Yield effects of genetically modified crops in developing countries. Science 299 (5608): 900–902.

    Article  Google Scholar 

  • Richards, D. G. 2010. Contradictions of the “new Green Revolution”: A view from South America’s southern cone. Globalizations 7 (4): 563–576.

    Article  Google Scholar 

  • Rip, A. 2002. Co-evolution of science, technology and society. In Expert review for the Bundesministerium Bildung und Forschung’s Förderinitiatieve, Politik, Wissenschaft und Gesellschaft, as managed by the Berlin-Brandenburgische Akademie der Wissenschaften. Enschede: Twente University.

    Google Scholar 

  • Rivera-Ferre, M. G. 2008. The future of agriculture. EMBO Reports 9 (11): 1061–1066.

    Article  Google Scholar 

  • Rudy, A. P., D. Coppin, J. Konefal, B. T. Shaw, T. T. Eyck, C. Harris, and L. Busch. 2007. Universities in the Age of Corporate Science: The UC Berkeley-Novartis Controversy. Philadelphia: Temple University Press.

    Google Scholar 

  • Satterfield, T., R. Gregory, S. Klain, M. Roberts, and K. M. Chan. 2013. Culture, intangibles and metrics in environmental management. Journal of Environmental Management 117: 103–114.

    Article  Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity). 2000. Text of the Cartagena protocol. Montreal: CBD.

    Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity). 2003. The Cartagena protocol on biosafety. Record of the negotiations. Montreal: CBD.

    Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity). 2014. Global overview of information on socioeconomic considerations arising from the impact of living modified organisms on the conservation and sustainable use of biological diversity. Ad-hoc Technical Expert Group on Socioeconomic Considerations. Report UNEP/CBD/BS/AHTEG-SEC/1/2. Montreal: CBD.

  • Scott, J. 1998. Seeing like a state: How certain schemes to improve the human condition have failed. New Haven: Yale University Press.

    Google Scholar 

  • Smale, M., P. Zambrano, G. Gruère, J. B. Falck-Zepeda, I. Matuschke, D. Horna, L. Nagarajan, I. Yerramareddy, and H. Jones. 2009. Measuring the economic impacts of transgenic crops in developing agriculture during the first decade: Approaches, findings, and future directions. Washington D.C.: IFPRI.

    Google Scholar 

  • Spielman, D. J. 2007. Pro-poor agricultural biotechnology: Can the international research system deliver the goods? Food Policy 32 (2): 189–204.

    Article  Google Scholar 

  • Spök, A. 2010. Assessing socio-economic impacts of GMOs, issues to consider for policy development: Final report. Vienna: Federal Ministry of Health; Federal Ministry for Agriculture, Forestry, Environment, and Water Management.

    Google Scholar 

  • Stabinsky, D. 2000. Bringing social analysis into a multilateral environmental agreement: Social impact assessment and the biosafety protocol. The Journal of Environment & Development 9 (3): 260–283.

    Article  Google Scholar 

  • Stirling, A. 1999. Risk at a turning point. Journal of Risk Research 1 (2): 97–109.

    Article  Google Scholar 

  • Stone, G. D. 2010. The anthropology of genetically modified crops. Annual Review of Anthropology 39: 381–400.

    Article  Google Scholar 

  • Stone, G. D. 2011. Field versus farm in Warangal: Bt cotton, higher yields, and larger questions. World Development 39 (3): 387–398.

    Article  Google Scholar 

  • Taverniers, I., N. Papazova, Y. Bertheau, M. De Loose, and A. Holst-Jensen. 2008. Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environmental Biosafety Research 7 (4): 197–218.

    Article  Google Scholar 

  • The World Bank. 2008. World development report. Agriculture for development https://siteresources.worldbank.org/INTWDR2008/Resources/WDR_00_book.pdf Accessed 15 Aug 2016.

  • Thomas, H., M. Fressoli, and A. Lalouf. 2008. Introducción. In Sociología de la tecnología. Actos, actores y artefactos, eds. H. Thomas, and A. Buch, 9–17. Buenos Aires: Universidad de Quilmes.

    Google Scholar 

  • Thompson, J., and I. Scoones. 2009. Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environmental Science & Policy 12 (4): 386–397.

    Article  Google Scholar 

  • Thompson, J., E. Millstone, I. Scoones, A. Ely, F. Marshall, E. Shah, S. Stagl, and J. Wilkinson. 2007. Agri-food system dynamics: Pathways to sustainability in an era of uncertainty (No. 4). Brighton: STEPS.

    Google Scholar 

  • UN (United Nations). 2007. 61/295. United Nations Declaration on the Rights of Indigenous Peoples. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N06/512/07/PDF/N0651207.pdf?OpenElement. Accessed 2 July 2016.

  • Vanloqueren, G., and P. Baret. 2009. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy 38: 671–683.

    Article  Google Scholar 

  • Walters, R. 2006. Crime, bio-agriculture and the exploitation of hunger. British Journal of Criminology 46 (1): 26–45.

    Article  Google Scholar 

  • Wang, S., D. R. Just, and P. Pinstrup-Andersen. 2008. Bt–cotton and secondary pests. International Journal of Biotechnology 10 (2–3): 113–121.

    Article  Google Scholar 

  • WEF (World Economic Forum). 2012. Putting the new vision for agriculture into action: A transformation is happening. Geneva: WEF.

    Google Scholar 

  • Wynne, B. 2005. Reflexing complexity: Post-genomic knowledge and reductionist returns in public science. Theory, Culture and Society 22 (5): 67–94.

    Article  Google Scholar 

  • Wynne, B., and A. Stirling. 2007. Normalising Europe through Science: Risk, Uncertainty and Precaution. Chapter 3. In Taking European knowledge society seriously. European Commission, Science and Governance Expert Group Report. EUR 22750, rapporteur, ed. U. Felt and B. Wynne, 31–42. Brussels: DG Research.

    Google Scholar 

  • Zadoks, J. C., and H. Waibel. 2000. From pesticides to genetically modified plants: history, economics and politics. NJAS–Wageningen Journal of Life Sciences 48 (2): 125–149.

    Article  Google Scholar 

  • Zamir, D. 2008. Plant breeders go back to nature. Nature Genetics 40 (3): 269–270.

    Article  Google Scholar 

Download references

Acknowledgements

Georgina Catacora-Vargas did not receive any specific financial support for the research involved in the preparation of this article. Rosa Binimelis acknowledges partial financial support for her work at The Agri/Cultures Project funded by the Norwegian Research Council (Grant No. 231146). Anne Ingeborg Myhr worked on this manuscript as part of her regular activities at GenØk – Centre for Biosafety, without any specific grant. Before retirement, Brian Wynne worked on this research as part of his regular Lancaster University activities. The co-authors thank two anonymous reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Catacora-Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catacora-Vargas, G., Binimelis, R., Myhr, A.I. et al. Socio-economic research on genetically modified crops: a study of the literature. Agric Hum Values 35, 489–513 (2018). https://doi.org/10.1007/s10460-017-9842-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10460-017-9842-4

Keywords

Navigation