Skip to main content

Advertisement

Log in

Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article (and its Supplementary information files).

References

  1. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478. https://doi.org/10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  2. Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P (2018) Endothelial cell metabolism in health and disease. Trends Cell Biol 28:224–236. https://doi.org/10.1016/j.tcb.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7:359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  4. Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165. https://doi.org/10.1016/j.ceb.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  5. Sun D, Liu Y, Yu Q, Zhou Y, Zhang R, Chen X et al (2013) The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials 34:171–180. https://doi.org/10.1016/j.biomaterials.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  6. Horowitz A, Tkachenko E, Simons M (2002) Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 157:715–725. https://doi.org/10.1083/jcb.200112145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622. https://doi.org/10.1038/nrm2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersson ER (2012) The role of endocytosis in activating and regulating signal transduction. Cell Mol Life Sci 69:1755–1771. https://doi.org/10.1007/s00018-011-0877-1

    Article  CAS  PubMed  Google Scholar 

  9. Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26–34. https://doi.org/10.1016/j.tcb.2013.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jopling HM, Odell AF, Hooper NM, Zachary IC, Walker JH, Ponnambalam S (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29:1119–1124. https://doi.org/10.1161/atvbaha.109.186239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elfenbein A, Lanahan A, Zhou TX, Yamasaki A, Tkachenko E, Matsuda M et al (2012) Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. Sci Signal 5:ra36. https://doi.org/10.1126/scisignal.2002495

    Article  PubMed  Google Scholar 

  12. Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HC et al (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15:249–260. https://doi.org/10.1038/ncb2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH (2014) FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS ONE 9:e98130. https://doi.org/10.1371/journal.pone.0098130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25:29–47. https://doi.org/10.1111/j.1472-8206.2010.00814.x

    Article  CAS  PubMed  Google Scholar 

  15. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564. https://doi.org/10.1038/nrm3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M et al (2004) Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114:898–907. https://doi.org/10.1172/JCI21152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hosaka T, Kimura H, Heishi T, Suzuki Y, Miyashita H, Ohta H et al (2009) Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am J Pathol 175:430–439. https://doi.org/10.2353/ajpath.2009.080788

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heishi T, Hosaka T, Suzuki Y, Miyashita H, Oike Y, Takahashi T et al (2010) Endogenous angiogenesis inhibitor vasohibin1 exhibits broad-spectrum antilymphangiogenic activity and suppresses lymph node metastasis. Am J Pathol 176:1950–1958. https://doi.org/10.2353/ajpath.2010.090829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyashita H, Watanabe T, Hayashi H, Suzuki Y, Nakamura T, Ito S et al (2012) Angiogenesis inhibitor vasohibin-1 enhances stress resistance of endothelial cells via induction of SOD2 and SIRT1. PLoS ONE 7:e46459. https://doi.org/10.1371/journal.pone.0046459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aillaud C, Bosc C, Peris L, Bosson A, Heemeryck P, Van Dijk J et al (2017) Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358:1448–1453. https://doi.org/10.1126/science.aao4165

    Article  CAS  PubMed  Google Scholar 

  21. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786. https://doi.org/10.1038/nrm3227

    Article  CAS  PubMed  Google Scholar 

  22. Gadadhar S, Bodakuntla S, Natarajan K, Janke C (2017) The tubulin code at a glance. J Cell Sci 130:1347–1353. https://doi.org/10.1242/jcs.199471

    Article  CAS  PubMed  Google Scholar 

  23. Zink S, Grosse L, Freikamp A, Banfer S, Muksch F, Jacob R (2012) Tubulin detyrosination promotes monolayer formation and apical trafficking in epithelial cells. J Cell Sci 125:5998–6008. https://doi.org/10.1242/jcs.109470

    Article  CAS  PubMed  Google Scholar 

  24. Herms A, Bosch M, Reddy BJ, Schieber NL, Fajardo A, Ruperez C et al (2015) AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun 6:7176. https://doi.org/10.1038/ncomms8176

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barisic M, Maiato H (2016) The tubulin code: a navigation system for chromosomes during mitosis. Trends Cell Biol 26:766–75. https://doi.org/10.1016/j.tcb.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen CY, Caporizzo MA, Bedi K, Vite A, Bogush AI, Robison P et al (2018) Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med 24:1225–1233. https://doi.org/10.1038/s41591-018-0046-2

    Article  CAS  PubMed  Google Scholar 

  27. Steinmetz MO, Akhmanova A (2008) Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 33:535–545. https://doi.org/10.1016/j.tibs.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  28. Peris L, Thery M, Faure J, Saoudi Y, Lafanechere L, Chilton JK et al (2006) Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 174:839–849. https://doi.org/10.1083/jcb.200512058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raybin D, Flavin M (1977) Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol 73:492–504

    Article  CAS  Google Scholar 

  30. Webster DR, Wehland J, Weber K, Borisy GG (1990) Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol 111:113–122

    Article  CAS  Google Scholar 

  31. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, Mazouzi A, Stickel E, Celie P et al (2017) Vasohibins encode tubulin detyrosinating activity. Science 358:1453–1456. https://doi.org/10.1126/science.aao5676

    Article  CAS  PubMed  Google Scholar 

  32. Idriss HT (2000) Phosphorylation of tubulin tyrosine ligase: a potential mechanism for regulation of alpha-tubulin tyrosination. Cell Motil Cytoskelet 46:1–5

    Article  CAS  Google Scholar 

  33. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. https://doi.org/10.1161/01.RES.0000259593.07661.1e

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609. https://doi.org/10.1038/ncb0703-599

    Article  CAS  PubMed  Google Scholar 

  35. Lee HN, Bosompra OA, Coller HA (2019) RECK isoforms differentially regulate fibroblast migration by modulating tubulin post-translational modifications. Biochem Biophys Res Commun 510:211–218. https://doi.org/10.1016/j.bbrc.2019.01.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seetharaman S, Etienne-Manneville S (2020) Cytoskeletal crosstalk in cell migration. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2020.06.004

    Article  PubMed  Google Scholar 

  37. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. https://doi.org/10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  38. Sai J, Fan GH, Wang D, Richmond A (2004) The C-terminal domain LLKIL motif of CXCR2 is required for ligand-mediated polarization of early signals during chemotaxis. J Cell Sci 117:5489–5496. https://doi.org/10.1242/jcs.01398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vilalta PM, Zhang L, Hamm-Alvarez SF (1998) A novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments. J Cell Sci 111(Pt 13):1841–1852

    CAS  PubMed  Google Scholar 

  40. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pang Y, Wang K, Wang Y, Chenlin Z, Lei W, Zhang Y (2018) Tumor-promoting and pro-angiogenic effects of roxarsone via VEGFR2/PLCγ/PKC signaling. Chem Biol Interact 292:110–120. https://doi.org/10.1016/j.cbi.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  42. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604. https://doi.org/10.1083/jcb.200602080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ewan LC, Jopling HM, Jia H, Mittar S, Bagherzadeh A, Howell GJ et al (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282

    Article  CAS  Google Scholar 

  44. Gampel A, Moss L, Jones MC, Brunton V, Norman JC, Mellor H (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631. https://doi.org/10.1182/blood-2005-12-007484

    Article  CAS  PubMed  Google Scholar 

  45. Bruns AF, Herbert SP, Odell AF, Jopling HM, Hooper NM, Zachary IC et al (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174. https://doi.org/10.1111/j.1600-0854.2009.01001.x

    Article  CAS  PubMed  Google Scholar 

  46. Feng L, Liao WX, Luo Q, Zhang HH, Wang W, Zheng J et al (2012) Caveolin-1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae. J Cell Physiol 227:2480–2491. https://doi.org/10.1002/jcp.22984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaengel K, Betsholtz C (2013) Endocytosis regulates VEGF signalling during angiogenesis. Nat Cell Biol 15:233–235. https://doi.org/10.1038/ncb2705

    Article  CAS  PubMed  Google Scholar 

  48. Czeisler C, Mikawa T (2013) Microtubules coordinate VEGFR2 signaling and sorting. PLoS ONE. https://doi.org/10.1371/journal.pone.0075833

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ballmer-Hofer K, Andersson AE, Ratcliffe LE, Berger P (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118:816–826. https://doi.org/10.1182/blood-2011-01-328773

    Article  CAS  PubMed  Google Scholar 

  50. Herkenne S, Paques C, Nivelles O, Lion M, Bajou K, Pollenus T et al (2015) The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Sci Signal 8:ra117. https://doi.org/10.1126/scisignal.aaa2403

    Article  CAS  PubMed  Google Scholar 

  51. Tessneer KL, Pasula S, Cai X, Dong Y, McManus J, Liu X et al (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arterioscler Thromb Vasc Biol 34:331–337. https://doi.org/10.1161/atvbaha.113.302586

    Article  CAS  PubMed  Google Scholar 

  52. McKenney RJ, Huynh W, Vale RD, Sirajuddin M (2016) Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J 35:1175–1185. https://doi.org/10.15252/embj.201593071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Driskell OJ, Mironov A, Allan VJ, Woodman PG (2007) Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 9:113–120. https://doi.org/10.1038/ncb1525

    Article  CAS  PubMed  Google Scholar 

  54. Scott-Solomon E, Kuruvilla R (2018) Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 91:25–33. https://doi.org/10.1016/j.mcn.2018.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li F, Hu Y, Qi S, Luo X, Yu H (2019) Structural basis of tubulin detyrosination by vasohibins. Nat Struct Mol Biol 26:583–591. https://doi.org/10.1038/s41594-019-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X, Simons M (2014) Receptor tyrosine kinases endocytosis in endothelium: biology and signaling. Arterioscler Thromb Vasc Biol 34:1831–1837. https://doi.org/10.1161/atvbaha.114.303217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iniguez A, Allard J (2017) Spatial pattern formation in microtubule post-translational modifications and the tight localization of motor-driven cargo. J Math Biol 74:1059–1080. https://doi.org/10.1007/s00285-016-1053-x

    Article  PubMed  Google Scholar 

  58. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221. https://doi.org/10.1038/nrclinonc.2011.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788–1795. https://doi.org/10.1038/sj.bjc.6603813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603. https://doi.org/10.1038/nrc2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6:465–477. https://doi.org/10.1038/nrclinonc.2009.94

    Article  CAS  PubMed  Google Scholar 

  62. Cao Y (2014) VEGF-targeted cancer therapeutics-paradoxical effects in endocrine organs. Nat Rev Endocrinol 10:530–539. https://doi.org/10.1038/nrendo.2014.114

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Zhang Y, Cao Z, Ji H, Yang X, Iwamoto H et al (2013) Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc Natl Acad Sci USA 110:12018–12023. https://doi.org/10.1073/pnas.1301331110

    Article  PubMed  Google Scholar 

  64. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P et al (2016) Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun 7:12680. https://doi.org/10.1038/ncomms12680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608. https://doi.org/10.1038/nrm2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito S, Miyashita H, Suzuki Y, Kobayashi M, Satomi S, Sato Y (2013) Enhanced cancer metastasis in mice deficient in vasohibin-1 gene. PLoS ONE 8:e73931. https://doi.org/10.1371/journal.pone.0073931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Noiges R, Eichinger R, Kutschera W, Fischer I, Nemeth Z, Wiche G et al (2002) Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties. J Neurosci 22:2106–2114. https://doi.org/10.1523/JNEUROSCI.22-06-02106.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Yuriko Fujinoya, Masanori Ikeda, and Kozo Tanaka (IDAC, Tohoku University, Japan) for help with experiments and providing materials or expertise, and Katarzyna A Podyma-Inoue for critical comments. We also appreciate scientific and technical assistance from the staff at Lonza, Leica Microsystems, and Bitplane. This work was supported by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (B): 15K20874, 16KK0177) and the Project for Promoting Leading edge Research in Oral Science at Tokyo Medical and Dental University (TMDU).

Funding

This work was supported by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (B): 15K20874, 16KK0177) and the Project for Promoting Leading edge Research in Oral Science at Tokyo Medical and Dental University (TMDU).

Author information

Authors and Affiliations

Authors

Contributions

MK, MN, TW and YS conceived and designed the study. MK and YS carried out the first identification of ∆Y-tubulin increase in ECs. IW constructed the expression vector of VASH1 C169A mutant. All other experiments were carried out by MK and KF; MK and TW wrote the manuscript.

Corresponding authors

Correspondence to Miho Kobayashi or Yasufumi Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All the experiments were approved by “the Safety Control Committee for Experiments Using Genetically Modified Organisms, Etc.” and done according to the guideline of “Safety Control Regulations for Experiments Using Genetically Modified Organisms, Etc., Tohoku University and Tokyo Medical and Dental University”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 149089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Wakabayashi, I., Suzuki, Y. et al. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 24, 159–176 (2021). https://doi.org/10.1007/s10456-020-09754-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09754-6

Keywords

Navigation