Skip to main content
Log in

Short-time behavior of the heat kernel and Weyl’s law on \({{\mathrm{RCD}}}^*(K,N)\) spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we prove pointwise convergence of heat kernels for mGH-convergent sequences of \({{\mathrm{RCD}}}^{*}(K,N)\)-spaces. We obtain as a corollary results on the short-time behavior of the heat kernel in \({{\mathrm{RCD}}}^*(K,N)\)-spaces. We use then these results to initiate the study of Weyl’s law in the \({{\mathrm{RCD}}}\) setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Colombo, M., Di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. Adv. Stud. Pure Math. 67, 1–58 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Honda, S.: New stability results for sequences of metric measure spaces with uniform Ricci bounds from below. In: Gigli, N. (ed.) To Appear as a Chapter in Measure Theory in Non-smooth Spaces. De Gruyter Press. Preprint arXiv:1605.07908

  6. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint arXiv:1509.07273

  7. Ambrosio, L., Stra, F., Trevisan, D.: Weak and strong convergence of derivations and stability of flows with respect to MGH convergence. J. Funct. Anal. 272, 1182–1229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics, vol. 25. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  9. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Mathematical analysis of evolution, information, and complexity chapter 1. In: Arendt, W., Schleich, W.P. (eds.) Weyl’s Law: Spectral Properties of the Laplacian in Mathematics and Physics. Wiley, Weinheim (2009). http://www.ebay.com/itm/NEW-Mathematical-Analysis-of-Evolution-Information-and-Complexity-/231877228032

  10. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brooks, R., Petersen, P., Perry, P.: Compactness and finiteness theorems for isospectral manifolds. J. Reine Angew. Math. 426, 67–90 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Cavalletti, F., Mondino, A.: Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Preprint arXiv:1502.06465

  13. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below, I. J. Differ. Geom. 46, 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below, III. J. Differ. Geom. 54, 37–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. 176, 1173–1229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Philippis, G., Marchese, A., Rindler, F.: On a conjecture of Cheeger. arXiv:1607.02554

  18. De Philippis, G., Rindler, F.: On the structure of \(\cal{A}\)-free measures and applications. Ann. Math. 184, 1017–1039 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, Y.: Heat kernels and Green’s functions on limit spaces. Commun. Anal. Geom. 10, 475–514 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Engel, A., Weiandt, M.: Isospectral Alexandrov spaces. Ann. Glob. Anal. Geom. 44, 501–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  23. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  24. Garofalo, N., Mondino, A.: Li–Yau and Harnack type inequalities in \(RCD^*(K, N)\) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113) (2015)

  26. Gigli, N., Mondino, A., Savaré, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. 111, 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Gigli, N., Pasqualetto, E.: Behaviour of the reference measure on RCD spaces under charts. arXiv:1607.05188

  28. Harvey, J.: Equivariant Alexandrov geometry and orbifold finiteness. J. Geom. Anal. 26, 1925–1945 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Honda, S.: Ricci curvature and \(L^p\)-convergence. J. Reine Angew. Math. 705, 85–154 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Honda, S.: Ricci curvature and orientability. arXiv:1610.02932

  32. Jiang, R.: The Li–Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. 104(1), 29–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, R., Li, H., Zhang, H.-C.: Heat kernel bounds on metric measure spaces and some applications. Potential Anal. 44, 601–627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kapovitch, V.: Perelman’s Stability Theorem. Surveys in Differential Geometry, Metric and Comparison Geometry, vol. XI. International Press, Somerville (2007)

    MATH  Google Scholar 

  35. Kell, M., Mondino, A.: On the volume measure of non-smooth spaces with Ricci curvature bounded below. arXiv:1607.02036

  36. Ketterer, C.: Cones over metric measure spaces and the maximal diameter theorem. J. Math. Pures Appl. 103(5), 1228–1275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. AMS 121, 113–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238, 269–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Commun. Anal. Geom. 11, 599–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Levitan, B.M.: On the asymptotic behavior of the spectral function of the second order elliptic equation. Izv. AN SSSR Ser. Mat 16(1), 325–352 (1952). (in Russian)

    Google Scholar 

  41. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Milman, E.: Spectral Estimates, Contractions and Hypercontractivity. arXiv:1508.00606v3

  43. Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds. arXiv:1405.2222

  44. Perelman, G.: Alexandrov spaces with curvatures bounded from below II, preprint (1991)

  45. Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Münster J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Simon, B.: Functional Integration and Quantum Physics. Academic Press, London (1979)

    MATH  Google Scholar 

  47. Stanhope, E.: Spectral bounds on orbifold isotropy. Ann. Glob. Anal. Geom. 27, 355–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm, K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  49. Sturm, K.-T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Sturm, K.-T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  51. Sturm, K.-T.: On the geometry of metric measure spaces, I and II. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121(1), 169–186 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  54. von Renesse, M.-K.: Heat kernel comparison on Alexandrov spaces with curvature bounded below. Potential Anal. 21(2), 151–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte. Nachrichten der Königlichen Geselischaft der Wissenschaften zu Göttingen 1911, 110–117 (1911)

    MATH  Google Scholar 

  56. Zhang, H.-C., Zhu, X.-P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Commun. Anal. Geom. 18, 503–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, H.-C., Zhu, X.-P.: Weyl’s law on \(RCD*(K,N)\) metric measure spaces. arXiv:1701.01967

Download references

Acknowledgements

The first and third author acknowledge the support of the PRIN2015 MIUR Project “Calcolo delle Variazioni”. The second author acknowledges the support of the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, the Grant-in-Aid for Young Scientists (B) 16K17585 and the Scuola Normale Superiore for warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Appendix: refinements of Karamata’s theorem

Appendix: refinements of Karamata’s theorem

In this section we prove Theorem 2.5 and its one-sided versions mentioned in Remark 2.6. We follow the proofs in Theorems 10.2 and 10.3 of [46], borrowing also the terminology “Abelian”, “Tauberian” from there.

Throughout this section \(\nu \) is a nonnegative and \(\sigma \)-finite Borel measure on \([0,+\infty )\). The results will then be applied to the case when \(\nu :=\sum _i\delta _{\lambda _i}\).

Lemma 5.1

For all \(t>0\) one has

$$\begin{aligned} \int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)=\int _0^\infty t\nu ([0,y])e^{-ty}\mathsf {d}y. \end{aligned}$$
(5.1)

Proof

By Cavalieri’s formula and the change of variables \(r=e^{-ty}\) we get

$$\begin{aligned} \int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)=\int _0^1\nu \left( \left\{ x:\ e^{-tx}\ge r\right\} \right) \mathsf {d}r= \int _0^\infty te^{-ty}\nu \left( \left\{ x:\ e^{-tx}\ge e^{-ty}\right\} \right) \mathsf {d}y \end{aligned}$$

and we conclude, since \(\{x:\ e^{-tx}\ge e^{-ty}\}=[0,y]\). \(\square \)

We start with the Abelian case, easier when compared to the Tauberian one.

Theorem 5.2

(Abelian theorem) Assume that there exist \(\gamma \in [0,+\infty )\) and \(C \in [0,+\infty )\) such that

$$\begin{aligned} \lim _{a \rightarrow +\infty }\frac{\nu ([0, a])}{a^{\gamma }}=C. \end{aligned}$$
(5.2)

Then

$$\begin{aligned} \lim _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)=C \Gamma (\gamma +1). \end{aligned}$$
(5.3)

More generally,

$$\begin{aligned} \limsup _{a \rightarrow +\infty }\frac{\nu ([0, a])}{a^{\gamma }}\le C<+\infty \quad \Longrightarrow \quad \limsup _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)\le C \Gamma (\gamma +1) \end{aligned}$$
(5.4)

and

$$\begin{aligned} \liminf _{a \rightarrow +\infty }\frac{\nu ([0, a])}{a^{\gamma }}\ge c\quad \Longrightarrow \quad \liminf _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)\ge c \Gamma (\gamma +1). \end{aligned}$$
(5.5)

Proof

Let \(F(a):=\nu ([0, a])\) and \(G(a):=(a+1)^{-\gamma }F(a)\). Then (5.2) yields

$$\begin{aligned} \lim _{a \rightarrow +\infty }G(a)=C. \end{aligned}$$
(5.6)

In particular \(\sup _a G(a)<\infty \). Then Lemma 5.1 gives

$$\begin{aligned} t^{\gamma }\int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x) = t^{\gamma +1}\int _0^\infty e^{-tx}(x+1)^{\gamma }G(x)\mathsf {d}x= \int _0^\infty e^{-y}(y+t)^{\gamma }G\left( y/t \right) \mathsf {d}y. \end{aligned}$$
(5.7)

Since for any \(t \in (0, 1]\)

$$\begin{aligned} e^{-y}(y+t)^{\gamma }G(y/t) \le e^{-y}(y+1)^{\gamma } \sup _a G(a) \in L^1([0,+\infty )), \end{aligned}$$
(5.8)

applying the dominated convergence theorem to (5.7) as \(t \downarrow 0\) shows (5.3) because \(G(y/t) \rightarrow C\) as \(t \downarrow 0\) by (5.6).

The one-sided versions (5.4), (5.5) follow by an analogous argument, using Fatou’s lemma and noticing that in the \(\limsup \) case the functions in (5.8) are dominated as \(t\rightarrow 0^+\) by an integrable function. \(\square \)

Now we deal with the Tauberian case.

Theorem 5.3

(Tauberian theorem) Assume that there exist \(\gamma \in [0,+\infty )\) and \(D \in [0,+\infty )\) such that

$$\begin{aligned} \lim _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )} e^{-tx}\mathsf {d}\nu (x)=D. \end{aligned}$$
(5.9)

Then

$$\begin{aligned} \lim _{a \rightarrow +\infty }\frac{\nu ([0, a))}{a^{\gamma }}=\frac{D}{\Gamma (\gamma +1)}. \end{aligned}$$
(5.10)

Proof

If \(\gamma =0\), then applying the monotone convergence theorem to (5.9) shows (5.10), hence we can assume \(\gamma >0\). For any \(t \in (0, 1]\) let \(\nu _t,\, \mu \) be Borel measures on \([0,+\infty )\) be, respectively, defined by

$$\begin{aligned} \nu _t(A):=t^{\gamma }\nu (t^{-1}A),\qquad \mu (A):=\int _Ax^{\gamma -1}\mathsf {d}x \end{aligned}$$
(5.11)

for any Borel subset A. Then (5.10) is equivalent to

$$\begin{aligned} \lim _{t \rightarrow 0^+}\nu _t([0, 1))=\frac{D}{\Gamma (\gamma )}\mu ([0, 1)) \end{aligned}$$
(5.12)

because

$$\begin{aligned} \nu _t([0, 1))=t^{\gamma }\nu \left( [0, t^{-1})\right) \quad \text {and}\quad \mu ([0, 1))=\int _0^1x^{\gamma -1}\mathsf {d}x=\frac{1}{\gamma }=\frac{\Gamma (\gamma )}{\Gamma (\gamma +1)}. \end{aligned}$$
(5.13)

In order to prove (5.12), we will show

$$\begin{aligned} \lim _{t \rightarrow 0^+}\int f(x)\mathsf {d}\nu _t(x)=\frac{D}{\Gamma (\gamma )}\int f(x)\mathsf {d}\mu (x) \end{aligned}$$
(5.14)

for any \(f \in C_c([0,+\infty ))\) as follows.

Let \(\hat{\nu }_t:=e^{-x}\mathsf {d}\nu _t(x)\) and \(\hat{\mu }:=e^{-x}\mathsf {d}\mu (x)\) be the corresponding weighted measures on \([0,+\infty )\). Then (5.9) with Lemma 5.1 yields

$$\begin{aligned} \lim _{t \rightarrow 0^+}\hat{\nu }_t([0,+\infty ))=\lim _{t\rightarrow 0^+}\int e^{-x}\mathsf {d}\nu _t(x) =\lim _{t \rightarrow 0^+}\int e^{-tx}t^{\gamma }\mathsf {d}\nu (x)=\frac{D}{\Gamma (\gamma )}\hat{\mu }([0,+\infty )). \end{aligned}$$
(5.15)

In particular

$$\begin{aligned} \sup _{t<1}\hat{\nu }_t([0, +\infty ))<+\infty . \end{aligned}$$
(5.16)

More strongly, (5.9) yields

$$\begin{aligned} \lim _{t \rightarrow 0^+}\int g(x)\mathsf {d}\hat{\nu }_t(x)=\frac{D}{\Gamma (\gamma )}\int g(x)\mathsf {d}\hat{\mu }(x) \end{aligned}$$
(5.17)

for any polynomial g(x) in \(e^{-x}\) (i.e., \(g(x)=\sum _{i=1}^Na_ie^{-ix}\)). Because

$$\begin{aligned} \lim _{t \rightarrow 0^+}\int e^{-kx}\mathsf {d}\hat{\nu }_t(x)&=\lim _{t \downarrow 0}\int e^{-(k+1)x}\mathsf {d}\nu _t(x) \\&=\lim _{t \rightarrow 0^+}\int e^{-(k+1)tx}t^{\gamma }\mathsf {d}\nu (x) \\&=\frac{D}{(k+1)^{\gamma }}\nonumber =\frac{D}{\Gamma (\gamma )}\int e^{-kx}\mathsf {d}\hat{\mu }(x). \end{aligned}$$

Let \(C_0([0,+\infty ))\) be the set of continuous functions f on \([0,+\infty )\) such that \(f(x) \rightarrow 0\) as \(x \rightarrow +\infty \). Then since the set of polynomials in \(e^{-x}\) is dense in \(C_0([0,+ \infty ))\) with respect to the norm \(\sup |f|\), applying the Stone–Weierstrass theorem to \((C_0([0,+\infty )), \sup |\cdot |)\) with (5.16) shows that (5.17) is satisfied for any \(g \in C_0([0,+\infty ))\), which implies (5.14).

We are now in a position to prove (5.12) by using (5.14). Indeed, it is well known that the weak convergence implies \(\nu _t(E)\rightarrow D\mu (E)/\Gamma (\gamma )\) for any compact set \(E\subset [0,+\infty )\) with \(\mu (\partial E)=0\). Choosing \(E=[0,1]\) we obtain (5.14). \(\square \)

Remark 5.4

The difficulty to obtain a one-sided version out of the previous proof, as we did for the Abelian case, can also be explained as follows: if we consider the push forward \(\sigma _t\) of the measures \(\hat{\nu _t}\) under the map \(x\mapsto e^{-x}\), the argument above shows that all moments of all weak limit points of \(\sigma _t\) are uniquely determined. Hence, since a finite Borel measure in [0, 1] is uniquely determined by its moments, uniqueness follows. If we replace the assumption (5.9) by a bound on the \(\liminf \) or the \(\limsup \), we find only an inequality between the moments of the measures, which does not seem to imply, in general, the corresponding inequality for the measures.

Proposition 5.5

Assume that for some \(\gamma \in [0, +\infty )\) one has

$$\begin{aligned} \limsup _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)\le C_0<+\infty . \end{aligned}$$
(5.18)

Then

$$\begin{aligned} \limsup _{\lambda \rightarrow +\infty }\frac{\nu ([0,\lambda ])}{\lambda ^{\gamma }}\le eC_0. \end{aligned}$$
(5.19)

Proof

Note that for any \(\lambda >0\) and any \(t>0\)

$$\begin{aligned} \nu ([0,\lambda ])\le e^{\lambda t}\int _{[0,\lambda ]}e^{-st}\mathsf {d}\nu (s) \le e^{\lambda t}\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s). \end{aligned}$$
(5.20)

By (5.18), for any \(\epsilon >0\) there exists \(t_0>0\) such that \(\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)\le (C_0+\epsilon )t^{-\gamma }\) for any \(t<t_0\). Thus (5.20) yields \(\nu ([0,\lambda ])\le e^{\lambda t}(C_0+\epsilon )t^{-\gamma }\) for any \(\lambda >0\) and any \(t<t_0\). Letting \(\lambda :=t^{-1}\) and then letting \(t \downarrow 0\) shows (5.19). \(\square \)

Proposition 5.6

Assume that for some \(\gamma \in [0,+\infty )\) one has

$$\begin{aligned} \liminf _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)>0,\qquad \limsup _{t \rightarrow 0^+}t^{\gamma }\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)<+\infty . \end{aligned}$$
(5.21)

Then

$$\begin{aligned} \liminf _{\lambda \rightarrow +\infty }\frac{\nu ([0,\lambda ])}{\lambda ^{\gamma }} >0. \end{aligned}$$
(5.22)

Proof

Call \(C_0>0\) the \(\liminf \) and \(C_1<+\infty \) the \(\limsup \) in (5.21). Note that for any \(\lambda >0\) and any \(t>0\)

$$\begin{aligned} \int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)&=\int _{[0,\lambda ]}e^{-st}\mathsf {d}\nu (s) + \sum _{\ell =1}^{\infty }\int _{(\ell \lambda ,(\ell +1)\lambda ]}e^{-st}\mathsf {d}\nu (s) \\&\le \nu ([0,\lambda ])+ \sum _{\ell =1}^{\infty }e^{-\ell \lambda t}\nu ([0,(\ell +1)\lambda ]) \\&= \sum _{\ell =0}^{\infty }e^{-\ell \lambda t}\nu ([0,(\ell +1)\lambda ]). \end{aligned}$$

In particular, letting \(\lambda :=t^{-1}\) yields

$$\begin{aligned} t^{\gamma }\int _{[0,+\infty )}e^{-st}\mathsf {d}\nu (s)\le t^{\gamma }\sum _{\ell =0}^{\infty }e^{-\ell }\nu \left( \left[ 0,\frac{\ell +1}{t}\right] \right) . \end{aligned}$$
(5.23)

Thus there exists \(t_0>0\) such that for any \(t<t_0\)

$$\begin{aligned} 0<\frac{C_0}{2} \le t^{\gamma }\sum _{\ell =0}^{\infty }e^{-\ell }\nu \left( \left[ 0,\frac{\ell +1}{t}\right] \right) . \end{aligned}$$
(5.24)

Next let us discuss the right-hand side of (5.24). By (5.21)and Proposi tion 5.5 there exists \(\hat{\lambda }>0\) such that \(\nu ([0,\lambda ])\le (eC_1+1)\lambda ^{\gamma }\) for any \(\lambda \ge \hat{\lambda }\). Thus for any \(t>0\) with \(t^{-1} \ge \hat{\lambda }\) we get

$$\begin{aligned} \nu \left( \left[ 0,\frac{\ell +1}{t}\right] \right) \le \left( eC_1+1\right) \frac{(\ell +1)^{\gamma }}{t^{\gamma }}. \end{aligned}$$

In particular

$$\begin{aligned} t^{\gamma }\sum _{\ell =k}^{\infty } e^{-\ell }\nu \left( \left[ 0,\frac{\ell +1}{t}\right] \right) \le \left( eC_1+1\right) \sum _{\ell =k}^{\infty }e^{-\ell }(\ell +1)^{\gamma } \end{aligned}$$
(5.25)

for any \(k \in \mathbb {N}\) and any \(t>0\) with \(t^{-1}\ge \hat{\lambda }\).

For any \(\delta >0\) there exists \(k_0 \in \mathbb {N}\) such that \(\sum _{\ell =k_0+1}^{\infty }e^{-\ell }(\ell +1)^{\gamma }<\delta \). Then, combining (5.24) with (5.25) yields

$$\begin{aligned} 0<\frac{C_0}{2}<t^{\gamma }\sum _{\ell =0}^{k_0}e^{-\ell } \nu \left( \left[ 0,\frac{\ell +1}{t}\right] \right) +\left( eC_1+1\right) \delta \end{aligned}$$
(5.26)

for any \(t>0\) with \(t<t_0\) and \(t^{-1} \ge \hat{\lambda }\), which easily shows (5.22) choosing \(\delta >0\) so small that \((eC_1+1)\delta <C_0/2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, L., Honda, S. & Tewodrose, D. Short-time behavior of the heat kernel and Weyl’s law on \({{\mathrm{RCD}}}^*(K,N)\) spaces. Ann Glob Anal Geom 53, 97–119 (2018). https://doi.org/10.1007/s10455-017-9569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9569-x

Keywords

Navigation