Skip to main content
Log in

A prime geodesic theorem for SL4

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A prime geodesic theorem is derived for rank-one geodesics in quotients of SL4. This has applications in class number asymptotics for quartic fields. For these applications it is necessary to prove a more general statement than in the literature: several regularity conditions have to be abandoned. As a consequence, the analytical difficulties multiply. The final result is obtained by a sandwiching argument from infinitely many independent asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel A. (1969). Introduction aux groupes arithmétiques. Hermann, Paris

    MATH  Google Scholar 

  2. Borel, A., Wallach, N.: Continuous Cohomology, Discrete Groups, and Representations of Reductive Groups. Ann. Math. Stud. Vol. 94, Princeton (1980)

  3. Cartan H. and Eilenberg S. (1956). Homological Algebra.. Princeton University Press, Princeton, NJ

    Google Scholar 

  4. Chandrasekharan, K.: Introduction to Analytic Number Theory. Springer-Verlag (1968)

  5. Conway J. (1978). Functions of One Complex Variable. Springer-Verlag, New York

    Google Scholar 

  6. Deitmar A. (1995). Higher torsion zeta functions. Adv. Math. 110: 109–128

    Article  MATH  MathSciNet  Google Scholar 

  7. Deitmar A. (2000). Geometric zeta-functions of locally symmetric spaces. Am. J. Math. 122(5): 887–926

    Article  MATH  MathSciNet  Google Scholar 

  8. Deitmar A. (2002). Class numbers of orders in cubic fields. J. Number Theory 95: 150–166

    MATH  MathSciNet  Google Scholar 

  9. Deitmar A. (2004). A prime geodesic theorem for higher rank spaces. Geom Funct Anal 14: 1238–1266

    Article  MathSciNet  Google Scholar 

  10. Deitmar A. and Hoffman J. (2006). The Ihara-Selberg zeta function for PGL3 and Hecke operators. Int. J. Math. 17: 143–156

    Article  MATH  MathSciNet  Google Scholar 

  11. Deitmar, A.: A prime geodesic theorem for higher rank spaces II: singular geodesics. Rocky Mountain J. Math. (2006)

  12. Deitmar, A., Pavey, M.: Class numbers of orders in complex quartic fields. Mathematische Annalen. (to appear)

  13. Dieudonné, J.: Treatise on Analysis. Academic Press (1976)

  14. Gangolli R. (1977). The length spectrum of some compact manifolds of negative curvature. J. Diff. Geom. 12: 403–426

    MATH  MathSciNet  Google Scholar 

  15. Gelfand, I.M., Graev, M.I., Pyatetskii-Shapiro, I.I.: Representation Theory and Automorphic Functions. Saunders (1969)

  16. Harish–Chandra J. (1975). Harmonic analysis on real reductive groups I. The theory of the constant term. J. Func. Anal. 19: 104–204

    Article  MATH  MathSciNet  Google Scholar 

  17. Hecht H. and Schmid W. (1983). Characters, asymptotics and \({\mathfrak{n}}\) -homology of Harish–Chandra modules. Acta Math. 151: 49–151

    Article  MATH  MathSciNet  Google Scholar 

  18. Hejhal, D.: The Selberg Trace Formula for \(PSL_2({\mathbb{R}})\) I. Springer Lecture Notes 548 (1976)

  19. Hochschild G. and Serre J.-P. (1953). Cohomology of Lie algebras. Ann. Math. 57: 591–603

    Article  MathSciNet  Google Scholar 

  20. Hochschild G. and Serre J.-P. (1953). Cohomology of group extensions. Trans. Am. Math. Soc. 74: 110–134

    Article  MATH  MathSciNet  Google Scholar 

  21. Hopf H. and Samelson H. (1941). Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen. Comment. Math. Helv. 13: 240–251

    Article  MATH  MathSciNet  Google Scholar 

  22. Howe R. and Moore C. (1979). Asymptotic properties of unitary representations. J. Funct. Anal. 32: 72–96

    Article  MATH  MathSciNet  Google Scholar 

  23. Juhl A. Cohomological Theory of Dynamical Zeta functions. Progress in Mathematics, Vol. 194. Birkhäuser Verlag, Basel (2001)

  24. Knapp, A.: Representation Theory of Semisimple Lie Groups. Princeton University Press (1986)

  25. Knieper G. (1997). On the asymptotic geometry of nonpositively curved manifolds. Geom. Funct. Anal. 7: 755–782

    Article  MATH  MathSciNet  Google Scholar 

  26. Koyama S. (1998). Prime geodesic theorem for arithmetic compact surfaces. Internat. Math. Res. Notices 8: 383–388

    Article  MathSciNet  Google Scholar 

  27. Labesse J.P. (1991). Pseudo-coefficients très cuspidaux et K-théorie. Math. Ann. 291: 607–616

    Article  MATH  MathSciNet  Google Scholar 

  28. Luo W. and Sarnak P. (1995). Quantum ergodicity of eigenfunctions on \({PSL}_2(Z)\backslash H^2\) Inst. Hautes ÈTudes Sci. Publ. Math. 81: 207–237

    Article  MATH  MathSciNet  Google Scholar 

  29. Margulis G.A. (1969). Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Funkcional. Anal. i Priložen. 3(4): 89–90

    MathSciNet  Google Scholar 

  30. Pierce R.S. (1982). Associative Algebras. Springer-Verlag, New York

    MATH  Google Scholar 

  31. Pollicott M. and Sharp R. (1998). Exponential error terms for growth functions on negatively curved surfaces. Am. J. Math. 120(5): 1019–1042

    Article  MATH  MathSciNet  Google Scholar 

  32. Randol B. (1977). On the asymptotic distribution of closed geodesics on compact Riemann surfaces. Trans. AMS 233: 241–247

    Article  MathSciNet  Google Scholar 

  33. Randol B. (1978). The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator. Trans. Am. Math. Soc. 236: 209–223

    Article  MATH  MathSciNet  Google Scholar 

  34. Sarnak P. (1982). Class numbers of indefinite binary quadratic forms. J. Number Theory 15: 229–247

    Article  MATH  MathSciNet  Google Scholar 

  35. Selberg, A.: On Discontinuous Groups in Higher-dimensional Symmetric Spaces. 1960 Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), pp. 147–164. Tata Institute of Fundamental Research, Bombay.

  36. Selberg A. (1956). Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20: 47–87

    MathSciNet  Google Scholar 

  37. Speh B. (1981). The unitary dual of Gl(3,R) and Gl(4,R). Math. Ann. 258: 113–133

    Article  MATH  MathSciNet  Google Scholar 

  38. Wallach N. (1976). On the Selberg Trace Formula in the case of compact quotient. Bull. AMS 82(2): 171–195

    MATH  MathSciNet  Google Scholar 

  39. Witte, D.: Introduction to arithmetic groups. http://arxiv.org/abs/math/0106063.

  40. Wolf J. (1962). Discrete groups, symmetric spaces and global holonomy. Am. J. Math. 84: 527–542

    Article  MATH  Google Scholar 

  41. Zelditch S. (1989). Trace formula for compact Γ \ PSL 2(R) and the equidistribution theory of closed geodesics. Duke Math. J. 59(1): 27–81

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Deitmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deitmar, A., Pavey, M. A prime geodesic theorem for SL4 . Ann Glob Anal Geom 33, 161–205 (2008). https://doi.org/10.1007/s10455-007-9078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9078-4

Keywords

Navigation