Skip to main content
Log in

Statistical modeling, forecasting and time series analysis of birch phenology in Montreal, Canada

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse birch pollen time series observed in Montreal (Canada) in order to understand the link between inter-annual variability of phenology and environmental factors and to build predictive models for the upcoming pollen season. Modeling phenology is challenging, especially in Canada, where phenological observations are rare. Nevertheless, understanding phenology is required for scientific applications (e.g. inputs to numerical models of pollen dispersion) but also to help allergy sufferers to better prepare their medication and avoidance strategies before the start of the pollen season. We used multivariate statistical regression to analyse and predict phenology. The predictors were drawn from a large basin (over 60) of potential environmental predictors including meteorological data and global climatic indices such NAO (North Atlantic Oscillation index) and ENSO/MEI (Multivariate Enso Index). Results of this paper are summarized as follows: (1) an accurate forecast for the upcoming season starting date of the birch pollen season was obtained (showing low bias and total forecast error of about 4 days in Montreal), (2) NAO and ENSO/MEI indices were found to be well correlated (i.e. 44% of the variance explained) with birch phenology, (3) a long-term trend of 2.6 days per decade (p < 0.1) towards longer season duration was found for the length of the birch pollen season in Montreal. Finally, perturbations of the quasi-biennial cycle of birch were observed in the pollen data during the pollen season following the Great Ice Storm of 1998 which affected south-eastern Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Asthmatic patients usually need to begin their anti-allergic treatment one or two weeks before pollination (Laaidi 2001).

  2. http://ville.montreal.qc.ca/portal/page?_pageid=6897,67887840&_dad=portal&_schema=PORTAL.

  3. The number of possible model sis 2p-1. With p = 22 pre-selected predictors (see Table 4), this gives over 4 million possibility of models which requires the use of automatic selection procedures.

  4.  A confounding variable has the property of correlating (positively or negatively) with both the dependent and independent variable (see Montgomery 2005 for further details).

References

  • Abley, M. (1998). The ice storm: An historic record in photographs of January 1998. In J. Robinson, McClelland and Stewart Inc., ISBN 0-7710-6100-5.

  • Adams-Groom, B., Emberlin, J., Corden, J., Millington, W., & Mullins, J. (2002). Predicting the start of the birch pollen season at London Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia, 18, 117–123.

    Article  Google Scholar 

  • Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.

    Article  Google Scholar 

  • Antépara, I., Fernández, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilboa area (European Atlantic seabord climate): pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.

    Article  Google Scholar 

  • Avalo, E., Pasqualoni, L., Federico, S., et al. (2008). Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy. International Journal of Biometeorology, 52, 787–796.

    Article  Google Scholar 

  • Bapikee, C. (2005). Contenu pollinique atmosphérique à Montréal (Québec) et les variations climatiques interannuelles de 1985 à 1988. Mémoire de maîtrise: Département de géographie de l’Université de Montréal.

    Google Scholar 

  • Beal, D. J. (2005). SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria. http://analytics.ncsu.edu/sesug/2005/SA01_05.PDF. Last Accessed January 20 2017.

  • Braun, E. L. (1950). Deciduous forest of Eastern North America. New York: The Free Press.

    Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.

    Article  Google Scholar 

  • CLA (Canadian Lung Association) (2015). http://www.lung.ca/home-accueil_e.php. Accessed January 20 2017.

  • Clot, B. (2001). Airborne birch pollen in Neuchatel (Switzerland): onset, peak and daily patterns. Aerobiologia, 17, 25–29.

    Article  Google Scholar 

  • Comtois, P., & Gagnon, L. (1988). Concentration pollinique et fréquence des symptômes de pollinose: une méthode pour déterminer les seuils cliniques. Revue Française d’Allergologie, 28(4), 279.

    Google Scholar 

  • Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics (American Statistical Association), 19(1), 15–18.

    Google Scholar 

  • D’Odorico, P., Yoo, J. C., & Jager, S. (2002). Changing seasons: An effect of the North Atlantic oscillation? Journal of Climate, 15, 435–445.

    Article  Google Scholar 

  • Dales, R. E., Cakmak, S., Judek, S., & Coates, F. (2008). Tree pollen and hospitalization for asthma in urban Canada. International Archives of Allergy and Immunology, 146, 241–247. doi:10.1159/000116360.

    Article  Google Scholar 

  • Daniel, C., & Wood, F. (1980). Fitting equations to data (Revised ed.). New-York: WileyInc.

    Google Scholar 

  • de Réamur, M. (1735). Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Académie des Sciences de Paris, 545.

  • Emberlin, J., Detandt, M., & Gehrig, R. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170. doi:10.1007/s00484-006-0038-7.

    Article  CAS  Google Scholar 

  • Emberlin, J., Savage, M., & Woodwood, R. (1993). Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana, 32, 359–363.

    Article  Google Scholar 

  • Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. Chichester: Wiley.

    Google Scholar 

  • Fairley, D., & Batchelder, G. L. (1986). A study of oak-pollen production and phenology in northern California: Prediction of annual variation in pollen counts based on geographic and meteorological factors. Journal of Allergy and Clinical Immunology, 78, 300–307.

    Article  CAS  Google Scholar 

  • Faust, M. (1989). Physiology of temperate zone fruit trees (pp. 169–234). London: Wiley.

    Google Scholar 

  • Frey, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season: an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674. doi:10.1007/s00484-008-0159-2.

    Article  Google Scholar 

  • Galán, C., García-Mozo, H., Vazquez, L., Ruiz, L., Diaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  • García-Mozo, H., Chine, I., & Aira, M. J. (2008). Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.

    Article  Google Scholar 

  • Goldberg, C., Bugh, H., Moseholm, L., & Weeke, E. R. (1988). Airborne pollen record in Denmark, 1977–86. Grana, 27, 209–217.

    Article  Google Scholar 

  • Guérin, B. (1993). Pollen et allergies. Éd. Allerbio, Varennes-en-Argonne, 279 pages.

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, G. J., & Hansen, C.F. (2009). Potential role of Ca in the response of paper birch (Betula papyrifera) to ice storm induced decline in Vermont, USA. In 94th ESA annual meeting, Albuquerque, New Mexico, August 2–7.

  • Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 20, 3–19.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Hoang Diem Ngo, T. (2012). The steps to follow in a multiple regression analysis. Paper 333-2012. SAS Global Forum 2012. April 22-25 Orlando, Florida. Available at: support.sas.com/resources/papers/proceedings12/333-2012.pdf.

  • Hurrell, J. W., & van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic oscillation. Climate Change, 36, 301–332.

    Article  Google Scholar 

  • Institut national de santé publique du Québec (INSPQ) (2013). États des connaissances sur le pollen et les allergies. Les assises pour une gestion efficace, ISBN 978-2-550-68403-9 (available at http://www.inspq.qc.ca).

  • IPCC (Inter-governmental Panel for Climate Change). (2007a). The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

  • IPCC (Inter-governmental Panel for Climate Change). (2007b). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In Solomon, S., D. Qin, M. Manning, & Z. Chen et al. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. available at http://www.ipcc.ch.

  • Jones, S. (1995). Allergenic pollen concentrations in the United Kingdom. PhD Thesis. London : University of North London.

  • Laaidi, M. (2001). Regional variations in the pollen season of Betula in Burgundy: Two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.

    Article  Google Scholar 

  • Laaidi, K., Laaidi, M., & Besancenot, J.-P. (1997). Pollens, pollinoses et météorologie. La météorologie, 20(8), 41–55.

    Article  Google Scholar 

  • Laaidi, K., Laaidi, M., & Besancenot, J.-P. (2002). Synergie entre pollens et polluants chimiques de l’air: les risques croisés. Environnement, Risques et santé, 1(1), 42–49.

    Google Scholar 

  • Latalowa, M., Miętus, M., & Uruska, A. (2002). Seasonal variations in the atmospheric Betula pollen in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia, 18, 33–43. doi:10.1023/A1014905611834.

    Article  Google Scholar 

  • Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15(4), 661–675.

    Google Scholar 

  • Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Pitagora Editrice Bologna ISBN 8-371-1043-X.

  • Mark, J., & Goldberg, M. A. (2001). Multiple regression analysis and mass assessment: A Review of the issues. The Appraisal Journal, 56, 89–109.

    Google Scholar 

  • Mayers, J. H., & Forgy, E. W. (1963). The development of numerical credit evaluation systems. Journal of the American Statistical association, 58(303), 799–806.

    Article  Google Scholar 

  • Méndez, J., Comtois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aereobiological studies from 1993 to 2000. Aerobiologia, 21, 115–123.

    Article  Google Scholar 

  • Montgomery, D. C. (2005). Design and analysis of experiments. 6th edn, Wiley. New York, Section 7.3.

  • NOAA (2012a). NAO bi-monthly index. (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/). Accessed 29 January 2017.

  • NOAA (2012b) Multivariate ENSO index (MEI) (https://www.esrl.noaa.gov/psd/enso/mei/index.html). Accessed 29 January 2017.

  • Ottersen, G., Planque, B., Belgrano, A., Post, E., Reid, P. C., & Stenseth, N. C. (2001). Ecological effects of the North Atlantic oscillation. Oecologia, 12, 1–14. doi:10.1007/s004420100655.

    Article  Google Scholar 

  • Ranta, H., & Satri, P. (2007). Synchronised inter-annual fluctuations of flowering intensity affects the exposure to allergenic tree pollen in North Europe. Grana, 46(4), 274–284.

    Article  Google Scholar 

  • Ranta, H., Siljamo, P., Oksanen, A., Sofiev, M., Linkosalo T., Bergmann, K.-C., Bucher, E., Ekebom, A., Emberlin, J., Gehrig, R., Hallsdottir, M., Jato, V., Jäger, S., Myszkowska, D., Paldy, A., Ramfjord, H., Severova, E., & Thibaudon, M. (2011). Aerial and annual variation of birch pollen loads and a modelling system for simulating and forecasting pollen emissions and transport at an European scale. In B. Clot, P. Comtois, & B. Escamilla-Garciá (eds), Aerobiological monographs. Towards a comprehensive vision (Vol.1, pp. 115–131). MeteoSwiss (CH) and University of Montreal(CA), Montréal, Canada,. ISBN 978-2-8399-0466-7.

  • Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.

    Article  Google Scholar 

  • Rea, R., & Eccel, E. (2006). Phenological models for blooming of apple in a mountainous region. International Journal of Biometeorology, 51, 1–16.

    Article  Google Scholar 

  • Rousi, M., & Heinonen, J. (2007). Temperature sum accumulation effects on within-population variation and long-term trends in date of bud burst of European white birch (Betula pendula). Tree Physiology, 27, 1019–1025.

    Article  Google Scholar 

  • Rozas, V., & García-González, I. (2012). Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int: J. Biometeorol. doi:10.1007/s00484-011-0479-5.

    Google Scholar 

  • SAS Institute Inc. (1989). SAS/STAT and SAS/ETS User’s Guide, Version 6, vol. 2 (4th ed.). Cary: SAS Institute.

    Google Scholar 

  • Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., Garcίa-Mozo, H., Gehrig, R., Grewling, H., Halley, J. M. et al. (2013). Monitoring, modelling and forecasting of the pollen season. Chap 4. In Allergenic pollen. A review of the production, release, distribution and health impacts. Chap. 4. Sofiev, Mikhail, Bergmann, Karl-Christian (Eds.), doi 10.1007/978-94-007-4881-1.

  • Scheifinger, H., Menzel, A., Koch, E., & Peter, C. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22, 1739–1755.

    Article  Google Scholar 

  • Shabbar, A., & Khandekar, M. (1996). The impact of El Niño—Southern Oscillation on the temperature field over Canada. Atmosphere-Ocean, 34, 401–416.

    Article  Google Scholar 

  • Shortle, W. C., Smith, K. T., Dudzik, K. R. et al. (2003). Tree survival and growth following ice storm injury. USDA Forest Service, Northeastern Research. Research paper NE-723.

  • Siljamo, P. (2013). Numerical modelling of birch pollen emissions and dispersion on regional and continental scales. Finnish Meteorological Institute Contributions No. 99, FMI-CONT-99. Helsinki, Finland. ISBN 978-951-697-795-2.

  • Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., et al. (2008a). Representativeness of point-wise phonological Betula data collected in different parts of Europe. Global Ecology and Biogeogeography, 17(4), 489–502.

    Article  Google Scholar 

  • Siljamo, P., Sofiev, M., Severova, E., et al. (2008b). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia, 24, 211–230. doi:10.1007/s10453-008-9100-8.

    Article  Google Scholar 

  • Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl, A., Siljamo, P. (2013b). Airborne pollen transport. Chap 5. In M. Sofiev & K. C. Bergmann (eds.), Allergenic pollen. A review of the production, release, distribution and health impacts. Springer Science + Business Media, Dordrecht, 256 pp. ISBN 978-94-007-4880-4e-ISBN 978-94-94-007-4881-1.

  • Sofiev, M., & Bergmann, K. C. (Eds.). (2013). Allergenic pollen. A review of the production, release, distribution and health impacts. New York : Springer. doi:10.1007/978-94-007-4881-1.

    Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013a). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57, 45–58. doi:10.1007/s00484-012-0532-z.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006a). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402. doi:10.1007/s00484-006-0027-X.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006b). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685.

    Article  CAS  Google Scholar 

  • Spieksma, F Th M, Emberlin, J. C., Hjelmroos, M., et al. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34, 51–57.

    Article  Google Scholar 

  • Stach, A., Emberlin, J., Smoth, B., Adams-Groom, B., & Myszkowska, D. (2008). Factors that determine the severity of Betula spp. Pollen season in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311–321. doi:10.1007/s00484-0127-2.

    Article  CAS  Google Scholar 

  • Stanley, R. G., & Linskens, H. F. (1974). Pollen, biology, biochemistry, management. Berlin: Springer.

    Google Scholar 

  • Tamburlini, G., et al. (2002). Children’s health and environment: a review of evidence, Environmental European Agency. Report no 29, 44-57. Available at http://www.euro.who.int/__data/assets/pdf_file/0007/98251/E75518.pdf. Accessed January 29 2017.

  • Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein, T., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., & Zhai, P. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H.L. Miller (eds.), Climate change 2007: The physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. pp. 235–336. https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3.html. Accessed January 29 2017.

  • Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. doi:10.1038/416389a.

    Article  CAS  Google Scholar 

  • Weisberg, S. (2013). Applied linear regression, 4th edn. ISBN: 978-1-118-38608-8. Wiley Publishers.

  • White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic vriability. Global Biogeochemical Cycles, 11(2), 217–234.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). (2003). Phenology and human health: Allergic disorders. Copenhagen; WHO regional office for Europe, 55p. Available at http://apps.who.int/iris/bitstream/10665/107479/1/e79129.pdf. Accessed January 29 2017.

  • Xie, Y., Wang, X., & Silander, J. A. (2015). Deciduous forest responses to temperature, precipitation and drought imply complex climate change impacts. PNAS, 112(44), 13585–13590. doi:10.1073/pnas.1509991112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Robichaud.

Ethics declarations

Conflict of interest

None.

Appendices

Appendix 1: List of potential predictors for phenological models

Predictors of the current year apply for the period January 1st to March 31st just prior to the upcoming pollen season. Predictors for the previous year start with the letter l (for lag) and apply for the previous calendar year.

Current year predictors:

  • tjan average January temperature

  • tfev average February temperature

  • tmarch average March temperature

  • twinmin mean winter minimum temperature (Jan-March)

  • twinavg mean winter temperature (Jan-March)

  • sum05_115 sum of temperature above 5 °C since January 1st cumulated at Julian day 115

  • sum03_115 sum of temperature above 3 °C since January 1st cumulated at Julian day 115

  • sum05_110 sum of temperature above 5 °C since January 1st cumulated at Julian day 110

  • sum03_110 sum of temperature above 3 °C since January 1st cumulated at Julian day 110

  • rainj total January rain amount

  • rainf total February rain amount

  • rainm total March rain amount

  • precipw total rain precipitation for the period January–March

  • nao1 NAO index for January

  • nao2 NAO index for February

  • nao3 NAO index for March

  • enso1 bi-monthly MEI index for January

  • enso2 bi-monthly MEI index for February

  • enso3 bi-monthly MEI index for March

  • ensowin mean bi-monthly MEI index for the period January–March

Previous year predictors:

  • ltjan last year average January temperature

  • ltfev: last year average February temperature

  • ltmar last year average March temperature

  • ltsum last year average summer temperature (June–July–August)

  • ltsummax last year average summer maximum temperature (June–July–August)

  • lrainf last year total amount of rain during fall (October–December)

  • lnao1 last year NAO index for January

  • lnao2 last year NAO index for February

  • lnao3 last year NAO index for March

  • lnao4 last year NAO index for April

  • lnao5 last year NAO index for May

  • lnao6 last year NAO index for June

  • lnao7 last year NAO index for July

  • lnao8 last year NAO index for August

  • lnao9 last year NAO index for September

  • lnao10 last year NAO index for October

  • lnao11 last year NAO index for November

  • lnao12 last year NAO index for December

  • lnaospr mean values of lnao4, lnao5 and lnao6 (spring months of the previous year)

  • lnaosum mean values of lnao7, lnao8 and lnao9 (summer months of the previous year)

  • lnaofal mean values of lnao10, lnao11 and lnao12 (fall months of the previous year)

  • lnaowin mean values of lnao1, lnao2, lnao3 (winter months of the previous year)

  • lensow same as ensowin but for the previous year

  • lenso1 last year bi-monthly ENSO/MEI index for January

  • lenso2 last year bi-monthly ENSO/MEI index for February

  • lenso3 last year bi-monthly ENSO/MEI index for March

  • lenso4 last year bi-monthly ENSO/MEI index for April

  • lenso5 last year bi-monthly ENSO/MEI index for May

  • lenso6 last year bi-monthly ENSO/MEI index for June

  • lenso7 last year bi-monthly ENSO/MEI index for July

  • lenso8 last year bi-monthly ENSO/MEI index for August

  • lenso9 last year bi-monthly ENSO/MEI index for September

  • lenso10 last year bi-monthly ENSO/MEI index for October

  • lenso11 last year bi-monthly ENSO/MEI index for November

  • lenso12 last year bi-monthly ENSO/MEI index for December

  • lensoa last year annual average of bi-monthly ENSO/MEI

  • lensospr last year spring average of bi-monthly ENSO/MEI

  • lensosum last year summer average of bi-monthly ENSO/MEI

  • lensof last year fall average of bi-monthly ENSO/MEI

  • ensowin winter average of bi-monthly ENSO/MEI of the current year

  • llength last year length of the season according to the D2 method

  • lendD2 last year Julian date for the end of birch pollen season based on the D2 method

  • lspi last year birch seasonal pollen index

Appendix 2: Steps followed for multiple regression

  1. 1.

    List of predictors established according to a literature survey (see a list in Appendix 1 above).

  2. 2.

    Scatter plots to evaluate linearity, correlation, outliers, etc.

  3. 3.

    Use of the procedure REG sequentially (options selection C p , Rsq in SAS®) to examine and select the most appropriate model among 2p − 1 model (chunks of 7 predictors are sequentially input giving 27–1 = 128 combinations of models for each chunk).

  4. 4.

    Step 3 is applied to the whole list of preselected predictors and model building is performed using forward, backward and stepwise procedure. The results are checked against another similar procedure (proc REG with STEPWISE option). Check with t-Test, F-Test, C p (Mallows, 1973), R 2 adjusted, etc. for regression coefficients of the model (see similar procedure, Hoang Diem Ngo 2012).

  5. 5.

    Model adequacy test (global F-test, optimum adjusted R 2, RMSE).

  6. 6.

    Check for model assumptions (model error are random and all pairs of random errors are independent), residual plots, normal probability plot and checking for outliers (Cook’s distance, Cook 1977), Durbin-Watson test for autocorrelation of residuals.

  7. 7.

    Check for multicollinearity of predictors and over-fitting.

  8. 8.

    Repeat steps 3–7 for three periods (1996–2009, 1996–2010 and 1996–2011) and for all predictands.

  9. 9.

    Model validation with independent data (the independent data is the year following a given training period).

Note that the entry value for a given potential predictor is set to p ≤ 0.15 and the elimination criteria to p > 0.15 (standard values in the community of multiple regression modeling and are often the default values in SAS multiple regression procedures, see Beal 2005; Hoang Diem Ngo 2012). As an alternative method, multiple regression using AIC criteria for minimization was also used but found having less accuracy against independent data (see text for details).

Appendix 3: Results of STEPWISE procedure

See Table 11.

Table 11 Final results from computer outputs for stepwise selection summary for the period 1996–2011, (A) start of the birch pollen season (mstart), (B) duration of the season (mlength), (C) seasonal pollen index (mspi) and (D) mpeak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robichaud, A., Comtois, P. Statistical modeling, forecasting and time series analysis of birch phenology in Montreal, Canada. Aerobiologia 33, 529–554 (2017). https://doi.org/10.1007/s10453-017-9488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9488-0

Keywords

Navigation