Skip to main content
Log in

The effects of novel leaf litter deposition on competitive, predator–prey and host–parasite interactions of American toad larvae

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Wetland plant communities are changing rapidly due to a wide range of human activities. The deposition of leaf litter from novel plant communities can alter both the chemical and physical habitat of aquatic ecosystems. Lesser understood are the ecological consequences of novel leaf litter inputs in aquatic communities. Toward this goal, we used two plant invasion scenarios (comparing native black huckleberry to exotic autumn olive and native swamp loosestrife to exotic purple loosestrife) to simulate a shift in wetland plant communities. In this study, we investigated the effects of novel leaf litter leachates on three aquatic ecological interactions: intraspecific competition, predation and parasitism. We examined how leaf litter leachates influence the interactions of American toad larvae (Anaxyrus americanus) with their conspecifics, a dragonfly predator (Anax spp.) and a trematode parasite (Echinostomatidae). We found that leaf litter type influenced competitive interactions only for the huckleberry versus autumn olive comparison. We did not detect any effects of leaf litter type on predator–prey interactions. Finally, litter type strongly influenced host–parasite interactions for both leaf litter comparisons, altering host susceptibility, parasite survival and net infection rates. These results highlight the breadth of potential ecological repercussions of shifting wetland plant communities for native ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data for this study are available at the Dryad Digital Repository: https://doi.org/10.5061/dryad.np5hqbztq.

Code Availability

All statistics were conducted using SPSS (Version 24, IBM).

References

  • Abelho M, Graça MAS (1996) Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204

    Article  Google Scholar 

  • Adams C, Saenz D (2012) Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the Southern Leopard Frog (Lithobates sphenocephalus). Can J Zool 90:991–998

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  Google Scholar 

  • Blossey B, Schroeder D, Hight SD, Malecki RA (1994) Host specificity and environmental impact of the Weevil Hylobius transversovittatus, a biological control agent of purple loosestrife (Lythrum salicaria). Weed Sci 42:128–133

    Article  Google Scholar 

  • Blossey B, Skinner LC, Taylor J (2001) Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers Conserv 10:1787–1807

    Article  Google Scholar 

  • Borth EB, Custer KW, McEwan RW (2018) Lethal effects of leaf leachate from the non-native invasive shrub Amur honeysuckle (Lonicera maackii) on a model aquatic organism (Hyalella azteca). Écoscience 25:189–197

    Article  Google Scholar 

  • Brockelman WY (1969) An analysis of density effects and predation in Bufo Americanus tadpoles. Ecology 50:632–644

    Article  Google Scholar 

  • Brown CJ, Blossey B, Maerz JC, Joule SJ (2006) Invasive plant and experimental venue affect tadpole performance. Biol Invasions 8:327–338

    Article  Google Scholar 

  • Burraco P, Iglesias-Carrasco M, Cabido C, Gomez-Mestre I (2018) Eucalypt leaf litter impairs growth and development of amphibian larvae, inhibits their antipredator responses and alters their physiology. Conserv Physiol 6:119

    Article  Google Scholar 

  • Buss N, Wersebe M, Hua J (2019) Direct and indirect effects of a common cyanobacterial toxin on amphibian-trematode dynamics. Chemosphere 220:731–737

    Article  CAS  PubMed  Google Scholar 

  • Bybee SM, Johnson KK, Gering EJ, Whiting MF, Crandall KA (2012) All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Org Divers Evol 12:241–250

    Article  Google Scholar 

  • Cameron GN, LaPoint TW (1978) Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates. Oecologia 32:349–366

    Article  PubMed  Google Scholar 

  • Canhoto C, Laranjeira C (2007) Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int Rev Hydrobiol 92:173–182

    Article  CAS  Google Scholar 

  • Chovanec A (1992) The influence of tadpole swimming behaviour on predation by dragonfly nymphs. Amphibia-Reptilia 13:341–349

    Article  Google Scholar 

  • Church JM, Williard KWJ, Baer SG, Groninger JW, Zaczek JJ (2004) Nitrogen leaching below riparian autumn olive stands in the dormant season. In: Yaussy DA, Hix DM, Long RP, Goebel PC (eds) Proceedings, 14th Central Hardwood Forest Conference, pp 211–216

  • Cohen JS, Maerz JC, Blossey B (2012) Traits, not origin, explain impacts of plants on larval amphibians. Ecol Appl 22:218–228

    Article  PubMed  Google Scholar 

  • Cohen JS, Rainford S-KD, Blossey B (2014) Community-weighted mean functional effect traits determine larval amphibian responses to litter mixtures. Oecologia 174:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Cothran RD, Stoler AB, Relyea RA (2014) Leaves and litterbugs: how litter quality affects amphipod life-history and sexually selected traits. Freshwater Sci 33:812–819

    Article  Google Scholar 

  • Daly EW, Johnson PTJ (2011) Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia 165:1043–1050

    Article  PubMed  Google Scholar 

  • Davidson EW, Larsen A, Palmer CM (2012) Potential influence of plant chemicals on infectivity of Batrachochytrium dendrobatidis. Dis Aquat Org 101:87–93

    Article  Google Scholar 

  • Dickson TL, Hopwood JL, Wilsey BJ (2012) Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biol Invasions 14:2617–2624

    Article  Google Scholar 

  • DiGiacopo DG, Meindl GA, Ryan S, Jaeger J, Wersebe M, Martin A, Robinson SA, Graham G, Palmer AR, Setteducate A, Murray I, Prior K, Hua J (2018) Interaction between invasive plant leaf litter and NaCl on two model amphibians. Biol Invasions 21:391–403

    Article  Google Scholar 

  • Dodd CE, Buchholz R (2018) Apparent maladaptive oviposition site choice of Cope’s gray treefrogs (Hyla chrysoscelis) when offered an array of pond conditions. Copeia 106:492–500

    Article  Google Scholar 

  • Dornbos DL, Martzke MR, Gries K, Hesselink R (2016) Physiological competitiveness of autumn olive compared with native woody competitors in open field and forest understory. For Ecol Manag 372:101–108

    Article  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of amphibians. JHU Press, New York

    Google Scholar 

  • Earl JE, Castello PO, Cohagen KE, Semlitsch RD (2014) Effects of subsidy quality on reciprocal subsidies: how leaf litter species changes frog biomass export. Oecologia 175:209–218

    Article  PubMed  Google Scholar 

  • Earl JE, Semlitsch RD (2015) Effects of tannin source and concentration from tree leaves on two species of tadpoles. Environ Toxicol Chem 34:120–126

    Article  CAS  PubMed  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412

    Article  PubMed  Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in bear brook, new hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439

    Article  Google Scholar 

  • Folsom TC, Collins NC (1984) The diet and foraging behavior of the larval dragonfly anax junius (Aeshnidae), with an assessment of the role of refuges and prey activity. Oikos 42:105–113

    Article  Google Scholar 

  • Gallie JA, Mumme RL, Wissinger SA (2001) Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American Toad, Bufo americanus. Herpetologica 57:376–383

    Google Scholar 

  • Going BM, Dudley TL (2008) Invasive riparian plant litter alters aquatic insect growth. Biol Invasions 10:1041–1051

    Article  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Haas W (2003) Parasitic worms: strategies of host finding, recognition and invasion1. Zoology 106:349–364

    Article  PubMed  Google Scholar 

  • Hejda M, Pyšek P, Jarošík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Article  Google Scholar 

  • Hickman CR, Watling JI (2014) Leachates from an invasive shrub causes risk-prone behavior in a larval amphibian. Behav Ecol 25:300–305

    Article  Google Scholar 

  • Holland MP, Skelly DK, Kashgarian M, Bolden SR, Harrison LM, Cappello M (2007) Echinostome infection in green frogs (Rana clamitans) is stage and age dependent. J Zool 271:455–462

    Article  Google Scholar 

  • Hossie TJ, Murray DL (2010) You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163:395–404

    Article  PubMed  Google Scholar 

  • Hua J, Buss N, Kim J, Orlofske SA, Hoverman JT (2016) Population-specific toxicity of six insecticides to the trematode Echinoparyphium sp. Parasitology 143:542–550

    Article  CAS  PubMed  Google Scholar 

  • Huffman JE, Fried B (2012) The biology of Echinoparyphium (Trematoda, Echinostomatidae). Acta Parasitol 57:199–210

    Article  PubMed  Google Scholar 

  • Jabiol J, Cornut J, Danger M, Jouffroy M, Elger A, Chauvet E (2014) Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web. Oecologia 176:225–235

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Chase JM (2004) Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecol Lett 7:521–526

    Article  Google Scholar 

  • Jones DK, Davila DD, Nguyen KH, Rohr JR (2019) Effect of agrochemical exposure on Schistosoma mansoni cercariae survival and activity. bioRxiv:701060

  • Kingsford RT, Basset A, Jackson L (2016) Wetlands: conservation’s poor cousins. Aquat Conserv Mar Freshwat Ecosyst 26:892–916

    Article  Google Scholar 

  • Kohri M, Kamada M, Nakagoshi N (2011) Spatial–temporal distribution of ornithochorous seeds from an Elaeagnus umbellata community dominating a riparian habitat. Plant Species Biol 26:174–185

    Article  Google Scholar 

  • Kohri M, Kamada M, Yuuki T, Okabe T, Nakagoshi N (2002) Expansion of Elaeagnus umbellata on a gravel bar in the Naka River, Shikoku, Japan. Plant Species Biol 17:25–36

    Article  Google Scholar 

  • Koprivnikar J, Baker RL, Forbes MR (2006) Environmental factors influencing trematode prevalence in grey tree frog (Hyla Versicolor) tadpoles in Southern Ontario. J Parasitol 92:997–1001

    Article  PubMed  Google Scholar 

  • Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931

    Article  Google Scholar 

  • Leonard N (2008) The effects of the invasive exotic Chinese tallow tree (Triadica sebifera) on amphibians and aquatic invertebrates. University of New Orleans Theses and Dissertations

  • Maerz JC, Brown CJ, Chapin CT, Blossey B (2005) Can secondary compounds of an invasive plant affect larval amphibians? Funct Ecol 19:970–975

    Article  Google Scholar 

  • May D, Shidemantle G, Melnick-Kelley Q, Crane K, Hua J (2019) The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors. Environ Pollut 251:600–608

    Article  CAS  PubMed  Google Scholar 

  • Milanovich JR, Barrett K, Crawford JA (2016) Detritus quality and locality determines survival and mass, but not export, of wood frogs at metamorphosis. PLoS ONE 11:e0166296–e0166296

    Article  PubMed  PubMed Central  Google Scholar 

  • Milotic D, Milotic M, Koprivnikar J (2017) Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence. Aquat Toxicol 189:42–49

    Article  CAS  PubMed  Google Scholar 

  • Milotic M, Milotic D, Koprivnikar J (2019) Effects of a cyanobacterial toxin on trematode cercariae. J Parasitol 105:598–605

    Article  CAS  PubMed  Google Scholar 

  • Minchella DJ, Scott ME (1991) Parasitism: a cryptic determinant of animal community structure. Trends Ecol Evol 6:250–254

    Article  CAS  PubMed  Google Scholar 

  • Montez RD, Saenz D, Martynova-Van Kley A, Van Kley J, Nalian A, Farrish K (2021) The influence of Chinese tallow (Triadica sebifera) leaf litter on water quality and microbial community composition. Aquat Ecol 55:265–282

    Article  CAS  Google Scholar 

  • Pechenik JA, Fried B (1995) Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: a test of the energy limitation hypothesis. Parasitology 111:373–378

    Article  Google Scholar 

  • Petranka JW (1989) Response of toad tadpoles to conflicting chemical stimuli: predator avoidance versus “Optimal” foraging. Herpetologica 45:283–292

    Google Scholar 

  • Pituch KA, Stevens JP (2015) Applied multivariate statistics for the social sciences: analyses with SAS and IBM’s SPSS, 6th edn. London, Routledge

    Book  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: Where do we stand? Biol Invasions 193:97–125

    Article  Google Scholar 

  • Quammen JK, Durtsche DRD (2003) Diet comparison in three tadpole species, Rana sylvatica, Bufo americanus, and Pseudacris crucifer, in a northern temperate climate. Norse Scientist 1:45–50

    Google Scholar 

  • Rauha JP, Wolfender JL, Salminen JP, Pihlaja K, Hostettmann K, Vuorela H (2001) Characterization of the polyphenolic composition of purple loosestrife (Lythrum salicaria). J Biosci 56:13–20

    CAS  Google Scholar 

  • Rohr JR, Raffel TR, Hall CA (2010) Developmental variation in resistance and tolerance in a multi-host–parasite system. Funct Ecol 24:1110–1121

    Article  Google Scholar 

  • Rohr JR, Raffel TR, Sessions SK, Hudson PJ (2008a) Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743–1753

    Article  PubMed  Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD, Schoff PK, Beasley VR (2008b) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1239

    Article  CAS  PubMed  Google Scholar 

  • Rubbo MJ, Belden LK, Kiesecker JM (2008) Differential responses of aquatic consumers to variations in leaf-litter inputs. Hydrobiologia 605:37–44

    Article  Google Scholar 

  • Sacerdote AB, King RB (2014) Direct effects of an invasive European buckthorn metabolite on embryo survival and development in Xenopus laevis and Pseudacris triseriata. J Herpetol 48:51–58

    Article  Google Scholar 

  • Saenz D, Adams CK (2017) Effects of Chinese tallow leaf litter on water chemistry and surfacing behaviour of anuran larvae. Herpetol J 27:326–332

    Google Scholar 

  • Schotthoefer AM, Cole RA, Beasley VR (2003) Relationship of tadpole stage to location of echinostome cercariae encystment and the consequences for tadpole survival. J Parasitol 89:475–482

    Article  PubMed  Google Scholar 

  • Sears BF, Schlunk AD, Rohr JR (2012) Do parasitic trematode cercariae demonstrate a preference for susceptible host species? PLOS ONE 7:e51012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherk TE (1977) Development of the compound eyes of dragonflies (odonata). I. Larval compound eyes. J Exp Zool 201:391–416

    Article  Google Scholar 

  • Skelly DK (1994) Activity level and the susceptibility of anuran larvae to predation. Anim Behav 47:465–468

    Article  Google Scholar 

  • Smyth, J. D., and D. W. Halton. 1983. The Physiology of Trematodes. CUP Archive.

  • Stephens JP, Berven KA, Tiegs SD (2013) Anthropogenic changes to leaf litter input affect the fitness of a larval amphibian. Freshw Biol 58:1631–1646

    Article  CAS  Google Scholar 

  • Stephens JP, Berven KA, Tiegs SD, Raffel TR (2015) Ecological stoichiometry quantitatively predicts responses of tadpoles to a food quality gradient. Ecology 96:2070–2076

    Article  PubMed  Google Scholar 

  • Stoler AB, Berven KA, Raffel TR (2016a) Leaf litter inhibits growth of an amphibian fungal pathogen. EcoHealth 13:392–404

    Article  PubMed  Google Scholar 

  • Stoler AB, Burke DJ, Relyea RA (2016b) Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. Ecology 97:1783–1795

    Article  PubMed  Google Scholar 

  • Stoler AB, Relyea RA (2011) Living in the litter: the influence of tree leaf litter on wetland communities. Oikos 120:862–872

    Article  Google Scholar 

  • Stoler AB, Relyea RA (2013a) Leaf litter quality induces morphological and developmental changes in larval amphibians. Ecology 94:1594–1603

    Article  PubMed  Google Scholar 

  • Stoler AB, Relyea RA (2013b) Bottom-up meets top-down: leaf litter inputs influence predator-prey interactions in wetlands. Oecologia 173:249–257

    Article  PubMed  Google Scholar 

  • Stoler AB, Relyea RA (2016) Leaf litter species identity alters the structure of pond communities. Oikos 125:179–191

    Article  Google Scholar 

  • Stoler AB, Relyea RA (2020) Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature. Ecol Monogr 6:e01400

    Google Scholar 

  • Temmink JHM, Field JA, van Haastrecht JC, Merkelbach RCM (1989) Acute and sub-acute toxicity of bark tannins in carp (Cyprinus carpio L.). Water Res 23:341–344

    Article  CAS  Google Scholar 

  • Thompson DW, Stuckey RL, Thompson EB (1987) Spread, impact and control of purple loosestrife in North American wetlands. US Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Wassersug RJ, Hoff KVS (1985) The kinematics of swimming in anuran larvae. J Exp Biol 119:1–30

    Article  Google Scholar 

  • Wassersug RJ, Seibert EA (1975) Behavioral responses of amphibian larvae to variation in dissolved oxygen. Copeia 1975:86–103

    Article  Google Scholar 

  • Watling JI, Hickman CR, Lee E, Wang K, Orrock JL (2011) Extracts of the invasive shrub Lonicera maackii increase mortality and alter behavior of amphibian larvae. Oecologia 165:153–159

    Article  CAS  PubMed  Google Scholar 

  • Weiher E, Wisheu IC, Keddy PA, Moore DRJ (1996) Establishment, persistence, and management implications of experimental wetland plant communities. Wetlands 16:208–218

    Article  Google Scholar 

  • Whiles MR, Gladyshev MI, Sushchik NN, Makhutova ON, Kalachova GS, Peterson SD, Regester KJ (2010) Fatty acid analyses reveal high degrees of omnivory and dietary plasticity in pond-dwelling tadpoles. Freshw Biol 55:1533–1547

    Article  CAS  Google Scholar 

  • Wilkins KW, Overholt E, Williamson C (2020) The effects of dissolved organic matter from a native and an invasive plant species on juvenile Daphnia survival and growth. J Plankton Res 42:453–456

    Article  Google Scholar 

  • Wymore AS, Salpas E, Casaburi G, Liu CM, Price LB, Hungate BA, McDowell WH, Marks JC (2018) Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia 807:131–144

    Article  CAS  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Nicholas Buss, Grascen Shidemantle, Vanessa Wuerthner, Jared Jaeger, Sean Ryan, Dyllan May, Quentin Melnick-Kelley, Matthew Wersebe, Kimoya Roach and Brianna Sander for their help in conducting the study. We would also like to thank John Maerz, Julian Shepherd, James Sobel and Weixing Zhu for their comments and suggestions, which helped shape this manuscript.

Funding

We would like to thank the National Science Foundation for funding provided to JH (NSF DEB 1655190).

Author information

Authors and Affiliations

Authors

Contributions

Both DGD and JH made substantial contributions to the design and execution of the study, analysis of the data and the writing and revision of the manuscript.

Corresponding author

Correspondence to Devin G. DiGiacopo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics Approval

Experimental vertebrate care was conducted in accordance with the Institutional Animal Care and Use Committee (IACUC) guidelines (protocol #: 809-18).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1003 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiGiacopo, D.G., Hua, J. The effects of novel leaf litter deposition on competitive, predator–prey and host–parasite interactions of American toad larvae. Aquat Ecol 56, 59–73 (2022). https://doi.org/10.1007/s10452-021-09893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09893-y

Keywords

Navigation