Skip to main content

Advertisement

Log in

Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Whilst a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long-term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer ‘guiding principles’ to support practical use of existing materials and outline key development needs for new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For consistency, we have used the term “P-adsorptive” throughout to describe P-uptake; however, it is recognised that many materials may be either P-adsorbents (surface complexation/binding or precipitation) or P-absorbents (internal/intra-particle binding), or a combination thereof when more than one mechanism is operative. It is also recognised that the nature of P-uptake and occupancy/speciation, particle size or association may change over time (e.g. due to processes such as internal diffusion, crystal overgrowths or Ostwald ripening).

References

  • Abell JM, Hamilton DP (2015) Biogeochemical processes and phytoplankton nutrient limitation in the inflow transition zone of a large eutrophic lake during a summer rain event. Ecohydrology 8:243–262

    Article  CAS  Google Scholar 

  • Adam K, Sovik AK, Krogstad T, Heistad A (2007) Phosphorus removal by the filter materials light-weight aggregates and shell sand: a review of processes and experimental set-ups for improved design of filter systems for wastewater treatment. Vatten 63:245–257

    CAS  Google Scholar 

  • Anderson DL, Tuovinen OH, Faber A, Ostrokowski I (1995) Use of soil amendments to reduce soluble phosphorus in dairy soils. Ecol Eng 5:229–246

    Article  Google Scholar 

  • Arias CA, Del Bubba M, Brix H (2000) Phosphorus removal by sands for use as a media in subsurface flow constructed reed beds. Water Res 35:1159–1168

    Article  Google Scholar 

  • Babin J, Prepas EF, Murphy TP, Hamilton HR (1989) A test of the effects of lime on algal biomass and total phosphorus concentrations in Edmonton storm water retention lakes. Lake Reserv Manag 5:129–135

    Article  Google Scholar 

  • Baken S, Verbeeck M, Verheyen D, Diels J, Smolders E (2015) Phosphorus losses from agricultural land to natural waters are reduced by immobilisation in iron-rich sediments in drainage ditches. Water Res 71:160–170

    Article  CAS  PubMed  Google Scholar 

  • Baker MJ, Blowes DW, Ptacek CJ (1998) Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ Sci Technol 32:2308–2316

    Article  CAS  Google Scholar 

  • Barca C, Meyer D, Liira M, Drissen P, Comeau Y, Andres Y, Chazarenc F (2014) Steel slag filters upgrade phosphorus removal in small wastewater treatment plants: removal mechanisms and performance. Ecol Eng 68:214–222

    Article  Google Scholar 

  • Barreal ME, Camps Arbestian M, Macais F, Fertitta AE (2001) Phosphate and sulphate retention by non volcanic soils with acidic properties. Soil Sci 166:691–707

    Article  CAS  Google Scholar 

  • Barrow NJ (1970) Comparison of the adsorption of molybdate, sulphate and phosphate by soils. Soil Sci 109:282–288

    Article  CAS  Google Scholar 

  • Barrow NJ (1982) Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils. Aust J Agric Res 33:275–285

    Article  CAS  Google Scholar 

  • Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37:787–829

    Article  CAS  Google Scholar 

  • Battin E, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold D, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nature 1:95–100

    CAS  Google Scholar 

  • Bergstrom AK, Karlsson D, Karlsson J, Vrede T (2015) N-limited consumer growth and low nutrient regeneration N:P ratios in lakes with low N deposition. Ecosphere 61:9

    Article  Google Scholar 

  • Birk S, Willby N, Kell MG, Bonne W, Borja A, Poikane S, van de Bund W (2013) Intercalibrating classifications of ecological status: Europe’s quest for common management. Sci Total Environ 454–455:490–499

    Article  PubMed  CAS  Google Scholar 

  • Bjork S (1988) Redevelopment of lake ecosystems: a case-study approach. Ambio 17:90–98

    Google Scholar 

  • Bolan NS, Syers JK, Tillman RW (1986) Ionic strength effects on the surface charge and adsorption of phosphate and sulfate by soils. J Soil Sci 37:379–388

    Article  CAS  Google Scholar 

  • Booker NA, Priestly AJ, Fraser IH (1999) Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environ Technol 20:777–782

    Article  CAS  Google Scholar 

  • Borggaard OK (1983) Effect of surface areas and mineralogy of iron oxides on their surface charge and anion-adsorption properties. Clay Clay Miner 31:230–232

    Article  CAS  Google Scholar 

  • Borggaard OK, Jorgensen SS, Moberg JP, Raben-Lange B (1990) Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. J Soil Sci 41:443–449

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Browman MG, Harris RF, Armstrong DE, Chesters G (1977) Interaction of soluble phosphate with aluminium hydroxide in lakes. Water Res Center, Univ Wisconsin, Report WIS WRC 77-05.79 pp

  • Burger DF, Hamilton DP, Hall JA, Ryan EF (2007) Phytoplankton nutrient limitation in a polymictic eutrophic lake: community versus species specific responses. Fundam Appl Limnol 169:57–68

    Article  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Nat Acad Sci USA 105:11039–11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho L, Poikane S, LycheSolheim A, Phillips G, Borics G, Catalan J, De Hoyos C, Drakare S, Dudley B, Jarvinen M, Laplace-Treyture C, Maileht K, McDonald C, Mischke U, Moe J, Morabito G, Nõges P, Nõges T, Ott I, Pasztaleniec A, Skjelbred B, Thackeray S (2012) Strength and uncertainty of lake phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704:127–140

    Article  CAS  Google Scholar 

  • Catherine A, Mouillot D, Escoffier N, Bernard C, Trousselier M (2010) Cost effective prediction of the eutrophication status of lakes and reservoirs. Freshw Biol 55:2425–2435

    Google Scholar 

  • Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  • Chung Y-C, Li Y-H, Chen C-C (2005) Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J Environ Sci Health Part A: Toxic/Haz Subst Environ Eng 40:1775–1790

    Article  CAS  Google Scholar 

  • Codd G (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16:51–60

    Article  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Cooke GD, Welch EB (1993) Phosphorus inactivation and sediment oxidation. In: Cooke GD, Welch EB, Peterson SA, Newroth PR (eds) Restoration and management of lakes and reservoirs. Lewis, London, pp 161–209

    Google Scholar 

  • Cooke GD, Welch EB, Peterson S, Nichols SA (2005) Restoration and management of lakes and reservoirs. CRC Press, Boca Raton

    Google Scholar 

  • Copetti D, Finsterle K, Marziali L, Stefani F, Tartari G, Douglas G, Reitzel K, Spears B, Winfield I, Crosa G, Haese P, Lurling M (2016) Eutrophication management in surface waters using lanthanum-modified bentonite: a review. Water Res (accepted)  

  • Dai LC, Pan G (2014) The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu. Water Sci Technol 5:1052–1058

    Article  CAS  Google Scholar 

  • Dai J, Yang H, Yan H, Shangguan Y, Zheng Q, Cheng R (2011) Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper (II). Chem Eng J 166:970–977

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Claydon JJ, Russell JM, Yeates GW (2000) Irrigation of allophanic soil with dairy effluent for 22 years: responses of nutrient storage and soil biota. Aust J Soil Res 38:25–35

    Article  Google Scholar 

  • Denaix L, Lamy I, Bottero JY (1999) Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Coll Surf A 158:315–325

    Article  CAS  Google Scholar 

  • Dithmer L, Gro Nielsen U, Lürling M, Spears BM, Yasseri S, Lundberg D, Moore A, Jensen ND, Reitzel K (in press) Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite. Water Res xx:xxx–xxx

  • Dodds WK, Smith VH, Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59:865–874

    Article  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  PubMed  Google Scholar 

  • Douglas GB (1997) Remediation material and remediation process for sediments. PCT/AU(1997/000892

  • Douglas GB (2002) Remediation material and remediation process for sediments. US Patent 6,350,383

  • Douglas GB (2014) Contaminant removal from Baal Gammon acidic mine pit water via in situ hydrotalcite formation. Appl Geochem 51:15–22

    Article  CAS  Google Scholar 

  • Douglas GB, Adeney JA (2001) 2000 Canning River Phoslock™ trial. Confidential report prepared for Water and Rivers Commission, CSIRO Land and Water Report

  • Douglas GB, Adeney JA, Zappia LR (2000) Sediment Remediation Project: 1998/9 Laboratory Trial Report. CSIRO Land and Water. Report No. 6/00 (2000): CSIRO

  • Douglas GB, Lürling M, Spears BM (2016) Assessment of changes in potential nutrient limitation in an impounded river after application of lanthanum-modified bentonite. Water Res (in press)

  • Douglas GB, Robb MS, Coad DN, Ford PW (2004) A review of solid phase adsorbents for the removal of phosphorus from natural and waste waters. In Valsami-Jones, E Ed. Phosphorus in Environmental Technology – Removal, Recovery, Applications. IWA Publishing. Chap 13:291–320

    Google Scholar 

  • Douglas GB, Robb MS, Ford PW (2008) Reassessment of the performance of mineral-based sediment capping materials to bind phosphorus: a comment on Akhurst et al. (2004). Mar Freshw Res 59:836–837

    Article  CAS  Google Scholar 

  • Douglas GB, Adeney J, Johnston K, Wendling LA, Coleman S (2012a) Investigation of major, trace element, nutrient and radionuclide mobility in a mining by-product NUA-amended soil. J Environ Qual 41:1818–1834

    Article  CAS  PubMed  Google Scholar 

  • Douglas GB, Wendling LA, Coleman S (2012b) Productive use of steelmaking by-product in environmental applications I: mineralogy and major and trace element geochemistry. Miner Eng 35:49–56

    Article  CAS  Google Scholar 

  • Downing JA, McCauley E (1992) The nitrogen: phosphorus relationship in lakes. Limnol Oceanogr 37:936–945

    Article  CAS  Google Scholar 

  • Drizo A, Frost CA, Grace J, Smith KA (1999) Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Res 33:3595–3602

    Article  CAS  Google Scholar 

  • Drizo A, Comeau Y, Forget C, Chapuis RP (2002) Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems. Environ Sci Technol 36:4642–4648

    Article  CAS  PubMed  Google Scholar 

  • Drizo A, Forget C, Chapuis RP, Comeau Y (2006) Phosphorus removal by electric arc steel furnace slag and serpentinite. Water Res 40:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Egemose S, Reitzel K, Andersen FØ, Flindt MR (2010) Chemical lake restoration products: sediment stability and phosphorus dynamics. Environ Sci Technol 44:985–991

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2000) Directive (2000/60/EC of the European Parliament and of the Council of 23rd October 2000) Establishing a Framework for Com- munity Action in the Field of Water Policy. Official Journal of the European Communities, L327/1. European Commission, Brussels

  • Farmer VC, Russell JD (1990) Structure and genesis of allophanes and imogolite and their distribution in non-volcanic soils. In: De Boodt et al (eds) Soil colloids and their associations in aggregates. pp 165–177

  • Firsching FH, Brune SN (1991) Solubility products of trivalent rare-earth phosphates. J Chem Eng Data 36:93–95

    Article  CAS  Google Scholar 

  • Futaedani N, Watanabe N, Yamada M, Kano Y, Funasaka R, Nagase H, Sato T, Ose Y (1992) Suppression of sediment oxygen demand with lime-based treatments. Sci Total Environ 116:137–144

    Article  CAS  Google Scholar 

  • Gan F, Zhou J, Wang H, Du C, Chen X (2009) Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Res 43:2907–2915

    Article  CAS  PubMed  Google Scholar 

  • Gibbs MM, Hickey CW, Ozkundacki D (2011) Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations. Hydrobiologia 658:253–275

    Article  CAS  Google Scholar 

  • Goundar MS, Morrison RJ, Togomana C (2014) Phosphorus requirements of some selected soil types in the Fiji sugarcane belt. South Pac J Nat Appl Sci 32:1–10

    Article  Google Scholar 

  • Gröger M (2010) Das Gesetz vom Minimum. Chem unserer Zeit 44:340–343

    Article  CAS  Google Scholar 

  • Gunn ID, Meis S, Maberly SC, Spears BM (2014) Assessing the responses of aquatic macrophytes to the application of a lanthanum modified bentonite clay, at Loch Flemington, Scotland, UK. Hydrobiologia 737:309–320

    Article  CAS  Google Scholar 

  • Hamilton DP, Wood SA, Dietrich DR, Puddick J (2014) Costs of harmful blooms of freshwater cyanobacteria. In: Sharma NK, Ashwani K, Stal LJ (eds) Cyanobacteria: an economic perspective. Wiley, New York, pp 246–247

    Google Scholar 

  • Han Y, Fan Y, Yang P, Wang X, Wang Y, Tiane J, Xu L, Wang C (2014) Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 213:87–94

    Article  CAS  Google Scholar 

  • Haumann D, Waite TD (1978) The kinetics of phosphorus removal in small alkaline lakes by natural and artificial processes. Water Soil Air Pollut 10:291–313

    Article  CAS  Google Scholar 

  • Hickey CW, Gibbs MM (2009) Lake sediment phosphorus release management: decision support and risk assessment framework. NZ J Mar Freshw Res 43:819–856

    Article  CAS  Google Scholar 

  • Ho G, Matthew K (1993) Phosphorus removal using bauxite refining residue (red mud). Aust Water Waste water Assoc 15th Fed Conv 607–613

  • Howarth R, Paerl HW (2008) Coastal marine eutrophication: control of both nitrogen and phosphorus is necessary. Proc Nat Acad Sci USA 105:E103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu PH (1989) Aluminum Oxides and Oxyhydroxides, In (Ed. Dixon, JB, Weed, SB). Minerals in Soil Environments, Ch. 7:331–378

    Google Scholar 

  • Huang WY, Li D, Liu ZQ, Yang J, Zhan Y (2014) Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of LaOH3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chem Eng J 236:191–201

    Article  CAS  Google Scholar 

  • Huser BJ, Bajer PG, Chizinski CJ, Sorensen PW, (2015) Effects of common carp (Cyprinuscarpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. Hydrobiologia (in press)

  • Jack PN, Platell N (1983) Phosphorus adsorption by limestone. Potential for Harvey River inputs to Harvey Estuary, West Aust Govt Chem Lab 7 pp Bentley

    Google Scholar 

  • Jaouadi S, Wahab MA, Anane M, Bousselmi L, Jellali S (2014) Powdered marble wastes reuse as a low-cost material for phosphorus removal from aqueous solutions under dynamic conditions. Desalin Water Treat 52:1705–1715

    Article  CAS  Google Scholar 

  • Jarvie HP, Sharpley AN, Spears BM, Buda AR, May L, Kleinman PJA (2013) Water quality remediation faces unprecedented challenges from legacy phosphorus. Environ Sci Technol 47:8997–8998

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Noges P, Persson E, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771

    Article  CAS  Google Scholar 

  • Jernalov A (1971). Phosphate Reduction in Lakes by precipitation with aluminium sulphate. 5th International Water Pollution Research Conference. Pergamon Press, New York

  • JNCC (2005) Common Standards Monitoring Guidance for Freshwater Habitats and Species. 1st version- March 2005, ISSN 1743-8160. Joint Nature Conservation Committee

  • Johansson L (1999) Blast furnace slag as phosphorus sorbents: column studies. Sci Total Environ 229:89–97

    Article  CAS  Google Scholar 

  • Johansson L, Gustaffson JP (2000) Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res 34:259–265

    Article  CAS  Google Scholar 

  • Johansson L, Renman G, Carlstrom H (1995) Light expanded clay aggregates LECA as reactive filter medium in constructed wetlands. Proc. Ecotechnics 95—Intl Symp Ecol Eng 214–224

  • Kaneko S, Nakajimi K (1988) Phosphorus removal by crystallization using a granular activated magnesia clinker. J Water Pollut Control Fed 60:1239–1244

    CAS  Google Scholar 

  • Karaca S, Gurses A, Ejder M, Acikyildiz M (2006) Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater 128:273–279

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Ryoo KS, Hong YP, Choi JH (2014) Evaluation of loess capability for adsorption of total nitrogen (TN) and total phosphorus (TP) in aqueous solution. Bull Kor Chem Soc 35:2471–2476

    Article  CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2009) Review of bauxite residue re-use options. CSIRO Minerals, Waterford, p 77

    Google Scholar 

  • Kolzau S, Wiedner C, Rucker J, Kohler J, Kohler A, Dolman AM (2014) Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations. PLoS ONE 9:e96065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Liu H, Zhao X, Jefferson W, Cheng F, Qu J (2014a) Phosphate removal from water using freshly formed Fe–Mn binary oxide: adsorption behaviours and mechanisms. Coll Surf A: Physicochem Eng Asp 455:11–18

    Article  CAS  Google Scholar 

  • Lu J, Wang Z, Lu S, Wu D (2014b) Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem Eng J 254:163–170

    Article  CAS  Google Scholar 

  • Lürling M, Faasen EJ (2012) Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Res 46:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Lund JWG (1955) The ecology of algae and waterworks practice. Proc Soc Water Treat Exam 4:83–109

    Google Scholar 

  • Lürling M, Tolman Y (2010) Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Res 44:309–319

    Article  PubMed  CAS  Google Scholar 

  • Lürling M, Van Oosterhout F (2013a) Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het GroeneEiland (The Netherlands). Hydrobiologia 710:253–263

    Article  CAS  Google Scholar 

  • Lürling M, Van Oosterhout F (2013b) Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Res 47:6527–6537

    Article  PubMed  CAS  Google Scholar 

  • Lürling M, Engels B, Waajen G, van Zanten H, Turlings L (2012) Bestrijding Blauwalgenoverlast. STOWA report (2012-42, ISBN 978.90.5773.575.2, www.stowa.nl

  • Lürling M, Van Oosterhout F, Waajen G (2014) Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Res 54:78–88

    Article  PubMed  CAS  Google Scholar 

  • LWRRDC (1998) Evaluation of the Impact of Research Projects Relating to Australia’s Natural Resources. Occasional Paper Land and Water Resources Research and Development Corporation, Canberra, Australia. No. IR 01/99

  • Ma J, Qin B, Wu P, Zhou J, Niu C, Deng J, Niu H (2015) Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. J Environ Sci 27:80–86

    Article  Google Scholar 

  • Mackay EB, Maberly CS, Gang P, Reitzel K, Bruere A, Corker N, Douglas G, Egemose S, Hamilton D, Hatton-Ellis T, Huser B, Li W, Meis S, Moss B, Lürling M, Phillips G, Yasseri S, Spears BM (2014) Geoengineering in lakes: welcome attraction or fatal distraction? Inland Waters 4:349–356

    Article  Google Scholar 

  • Mann RA, Bavor HJ (1993) Phosphorus removal in constructed wetlands using gravel and industrial waste substrata. Water Sci Technol 27:107–113

    CAS  Google Scholar 

  • Marsden S (1989) Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshw Biol 21:139–162

    Article  CAS  Google Scholar 

  • Mateus DMR, Vaz MFN, Pinho HJO (2012) Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecol Eng 41:65–69

    Article  Google Scholar 

  • McLaughlin JR, Ryden JC, Syers JK (1981) Sorption of inorganic phosphate by iron and aluminium containing compounds. J Soil Sci 32:365–377

    Article  CAS  Google Scholar 

  • Meis S, Spears BM, Maberly S, Perkins R (2011) Sediment amendment with Phoslock® in Clatto Reservoir Dundee, UK: investigating spatial distribution and impacts on sediment phosphorus binding capacity. J Environ Manag 931:185–193

    Google Scholar 

  • Misra C, Perrotta AJ (1992) Composition and properties of synthetic hydrotalcites. Clay Clay Miner 40:145–150

    Article  CAS  Google Scholar 

  • Miyata S (1980) Physico–chemical properties of synthetic hydrotalcites in relation to composition. Clay Clay Miner 28:50–56

    Article  CAS  Google Scholar 

  • Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clay Clay Miner 31:305–311

    Article  CAS  Google Scholar 

  • Moro T, Kunito T, Sato T (2015) Assessment of phosphorus bioavailability in cultivated Andisols from a long-term fertilization field experiment using chemical extractions and soil enzyme activities. Archiv Agro Soil Sci 61:1107–1123

    Article  CAS  Google Scholar 

  • Muhid P, Burford MA (2012) Assessing nutrient limitation in a subtropical reservoir. Inland Water 2:185–192

    Article  CAS  Google Scholar 

  • Muller S, Mitrovic SM (2014) Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia 710:3–21

    Google Scholar 

  • Nikolai SJ, Dzialowski AR (2014) Effects of internal phosphorus loading on nutrient limitation in a eutrophic reservoir. Limnologica 49:33–41

    Article  CAS  Google Scholar 

  • Ning P, Bart HJ, Li B, Lu X, Zhang Y (2008) Phosphate removal from wastewater by model-LaIII zeolite adsorbents. J Environ Sci 20:670–674

    Article  CAS  Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Francois-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51:1458–1473

    Article  Google Scholar 

  • Nogaro G, Burgin AJ, Schoepfer VA, Konkler MJ, Bowman KL, Hammerschmidt CR (2013) Aluminumsulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem. Environ Pollut 176:267–274

    Article  CAS  PubMed  Google Scholar 

  • Norrish K, Rosser H (1983) Mineral phosphates. In: CSIRO Div. Soils (ed) Soils: an Australian viewpoint, pp 335–361

  • NOTOX (1995) Report Daphnia magna, reproduction test with lanthanum (La). NOTOX B.V.s Hertogenbosch, The Netherlands, NOTOX Project 139499, NOTOX substance 47178

  • Noyma N, de Magalhães L, Lima Furtado L, Mucci M, van Oosterhout F, Huszar VLM, ManziMarinho M and Lürling M (in press). Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculents and phosphorus adsorbing natural soil and modified clay. Water Res xx:xxx–xxx

  • Oliveira M, Machado AV (2013) The role of phosphorus on eutrophication: a historical review and future perspectives. Environ Technol Rev 2:117–127

    Article  CAS  Google Scholar 

  • Özkundakci D, Hamilton DP, Scholes P (2010) Effect of intensive catchment and in-lake restoration procedures on phosphorus concentrations in a eutrophic lake. Ecol Eng 36:396–405

    Article  Google Scholar 

  • Pan G, Krom MD, Herut B (2002) Adsorption–desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater. Environ Sci Technol 36:3519–3524

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Zou H, Chen H, Yuan X (2006) Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ Pollut 141:206–212

    Article  CAS  PubMed  Google Scholar 

  • Pan G et al (2011a) In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol Eng 37:302–308

    Article  Google Scholar 

  • Pan G, Chen J, Anderson DM (2011b) Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10:381–387

    Article  Google Scholar 

  • Pan G, Dai L, Li L, He L, Li H, Bi L, Gulati RD (2012) Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ Sci Technol 46:5077–5084

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Krom MD, Zhang M, Zhang X, Wang L, Dai L, Sheng Y, Mortimer RJG (2013) Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China). Environ Sci Technol 47:9685–9692

    Article  CAS  PubMed  Google Scholar 

  • Parfitt RL, Hart PBS, Meyrick KF, Russell M (1982) Response of ryegrass and white clover to phosphorus on an allophonic soil, Egmont black loam. NZ J Agric Res 25:549–555

    Article  Google Scholar 

  • Parfitt RL, Hume LJ, Sparling GP (1989) Loss of availability of phosphorus in New Zealand soils. J Soil Sci 40:371–382

    Article  Google Scholar 

  • Patterson MJ, Schindler DW, Hecky RE, Findlay DL, Rondeau KJ (2011) Comment: Lake 227 shows clearly that controlling inputs of nitrogen will not reduce or prevent eutrophication of lakes. Limnol Oceanogr 56:1545–1547

    Article  CAS  Google Scholar 

  • Poikane S, Birk S, Böhmer J, Carvalho L, de Hoyos C, Gassner H, Hellsten S, Kelly M, LycheSolheim A, Olin M, Pall K, Phillips G, Portielje R, Ritterbusch D, Sandin L, Schartau AK, Solimini AG, van den Berg M, Wolfram G, van de Bund W (2015) A hitchhiker’s guide to European lake ecological assessment and intercalibration. Ecol Ind 520:533–544

    Article  Google Scholar 

  • Polkane S, Portielje R, ven den Berg M, Phillips P, Brucet S, Carvalho L, Mischke U, Ott I, Soska H, Van Wichelen J (2014) Defining ecologically relevant water quality targets for lakes in Europe. J Appl Ecol 51:592–602

    Article  CAS  Google Scholar 

  • Pontikes Y, Angelopoulos GN (2013) Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour Conserv Recycl 73:53–63

    Article  Google Scholar 

  • Prepas EE, Murphy TM, Crosby JM, Walty D, Lim JT, Babin J, Chambers PA (1990) Reductions of phosphorus and chlorophyll a concentrations following CaCO3 and Ca(OH)2 additions to hypereutrophic Figure Eight lake, Alberta. Environ Sci Technol 24:1252–1258

    Article  CAS  Google Scholar 

  • Pretty JN, Mason CF, Nedwell DB, Hine RE, Dils R (2003) Environmental costs of freshwater eutrophication on England and Wales. Environ Sci Technol 37:201–208

    Article  CAS  PubMed  Google Scholar 

  • Proctor DM, Fehling KA, Shay EC, Wittenborn JL, Green JJ, Avent C, Bigham RD, Connolly M, Lee B, Shepker TO, Zak MA (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34:1576–1582

    Article  CAS  Google Scholar 

  • Reardon EJ, Della Valle S (1997) Anion sequestering by the formation of anionic clays: lime treatment of fly ash slurries. Environ Sci Technol 31:1218–1223

    Article  CAS  Google Scholar 

  • Reitzel K, Lotter S, Dubke M, Egemose S, Jensen HS, Andersen FØ (2012) Effects of Phoslock® treatment and chironomids on the exchange of nutrients between sediment and water. Hydrobiologia 703:189–202

    Article  CAS  Google Scholar 

  • Reitzel K, Andersen FØ, Egemose S, Jensen HS (2013a) Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Res 47:2787–2796

    Article  CAS  PubMed  Google Scholar 

  • Reitzel K, Jensen HS, Egemose S (2013b) pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminium. Water Res 47:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Ripl W (1976) Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio 5:312–315

    Google Scholar 

  • Ripl W (1994) Sediment treatment. In: Eiseltova M (ed) Restoration of lakes ecosystems: a holistic approach. Inland Waterfowl Wetland Res Bur 32:75–81

  • Ripl W, Lindwark G (1978) Ecosystem control by nitrogen metabolism in sediment. Vatten 34:135–144

    CAS  Google Scholar 

  • Robb MR, Greenop B, Goss Z, Douglas GB, Adeney JA (2003) Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrol Proc 494:237–243

    CAS  Google Scholar 

  • Roques H, Nugroho-Juedy L, Lebugle A (1991) Phosphorus removal from wastewater by half-burned dolomite. Water Res 25:959–965

    Article  CAS  Google Scholar 

  • Sakadevan K, Bavor HJ (1998) Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res 32:393–399

    Article  CAS  Google Scholar 

  • Schindler DW (2012) The dilemma of controlling cultural eutrophication in lakes. Proc R Soc B: Biol Sci 279:4322–4333

    Article  CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kaisan SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Nat Acad Sci USA 105:11254–11258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JT, McCarthy MJ (2010) Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55:1265–1270

    Article  CAS  Google Scholar 

  • Seida Y, Nakano Y (2000) Removal of humic substances by layered double hydroxide containing iron. Water Res 34:1487–1494

    Article  CAS  Google Scholar 

  • Shi WQ, Tan WQ, Wang LJ, Pan G (2015) Removal of microcystis aeruginosa using cationic starch modified soils. Water Res. doi:10.1016/j.watres.2015.06.029

    Google Scholar 

  • Shiao SJ, Akashi K (1977) Phosphate removal from aqueous solutions on activated red mud. J Water Pollut Control Fed 49:280–285

    CAS  Google Scholar 

  • Shilton A, Pratt S, Drizo A, Mahmood B, Banker S, Billings L, Glenny S, Luo D (2005) Active filters for upgrading phosphorus removal from pond systems. Water Sci Technol 51:111–116

    CAS  PubMed  Google Scholar 

  • Shin HS, Kim MJ, Nam SY, Moon HC (1996) Phosphorus removal by hydrotalcite compounds (HTLcs). Water Sci Technol 34:161–168

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Sneller FEC, Kalf DF, Weltje L, van Wezel AP (2000) Maximum permissible concentrations and negligible concentrations for rare earth elements (REEs). RIVM report 601501011

  • Søndergaard M, Jeppesen E, Jensen JP (2000) Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Lake Res Manag 16:195–204

    Article  Google Scholar 

  • Spears BM, Maberly SC (2014) Lessons learned from geoengineering freshwater systems. Nat Clim Change 4:935–936

    Article  Google Scholar 

  • Spears BM, Dudley B, Reitzel K, Rydin E (2013a) Geo-engineering in lakes: a call for consensus. Environ Sci Technol 47:3953–3954

    Article  CAS  PubMed  Google Scholar 

  • Spears BM, Meis S, Anderson A, Kellou M (2013b) Comparison of phosphorus P removal properties of materials proposed for the control of sediment P release in UK lakes. Sci Total Environ 442:103–110

    Article  CAS  PubMed  Google Scholar 

  • Spears BMM, Lürling S, Yasseri AT Castro-Castellon, Gibbs M, Meis S, McDonald C, McIntosh J, Sleep D, Van Oosterhout F (2013c) Lake responses following lanthanum-modified bentonite clay Phoslock® application: an analysis of water column lanthanum data from 16 case study lakes. Water Res 4715:5930–5942

    Article  CAS  Google Scholar 

  • Spears BM, Mackay EB, Yasseri S, Gunn IDM, Waters KE, Andrews C, Cole S, de Ville M, Kelly A, Meis S, Moore AL, Nürnberg GK, van Oosterhout F, Pitt JA, Madgwick G, Woods HJ, Lürling M (2016) Lake responses following lanthanum-modified bentonite (Phoslock®) application: a meta-analysis of water quality and aquatic macrophyte responses across 18 lakes. Water Res (in press)

  • Stauber JL (2000) Toxicity testing of modified clay leachates using freshwater organisms. CSIRO Centre for Advanced Analytical Chemistry Energy Technology. Report No. ETIR267R. Prepared for CSIRO Land and Water

  • Stauber JL, Binet MT (2000) Canning River Phoslock Field Trial: Ecotoxicology Testing Final Report. CSIRO & the WA Waters and Rivers Commission

  • Suzuki M, Fuji T (1988) Simultaneous removal of phosphate and ammonium ions from wastewater by composite adsorbent. Proc Water Pollut Control Asia 239–245

  • Takeuchi M, Komada M (1998) Phosphorus removal from hoggery sewage using natural calcium carbonate. Jpn Agric Res Q 32:23–30

    CAS  Google Scholar 

  • Taylor RM (1984) The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis. Clay Miner 19:591–603

    Article  CAS  Google Scholar 

  • Thornber MR, Hughes CA (1987) The mineralogical and chemical properties of red mud waste from the Western Australian alumina industry. In: Wagh AS, Desai P (ed) Proc. Int. Conf. Bauxite Tailings, Kingston, Jamaica. pp 1–19

  • Trochine C, Guerrieri ME, Lioriussen L, Lauridsen TL, Jeppensen E (2014) Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshw Biol 59:905–917

    Article  CAS  Google Scholar 

  • Van Oosterhout F, Lürling M (2011) Effects of the novel ‘Flock & Lock’ lake restoration technique on Daphnia in Lake Rauwbraken (The Netherlands). J Plankton Res 33:255–263

    Article  Google Scholar 

  • Van Oosterhout F, Lürling M (2013) The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton. Hydrobiologia 710:265–277

    Article  CAS  Google Scholar 

  • Vohla C, Koiv M, Bavor J, Chazarenc F, Mander U (2011) Filter materials for phosphorus removal from wastewater in treatment wetlands: a review. Ecol Eng 37:70–89

    Article  Google Scholar 

  • Vucelic M, Jones W, Moggridge GD (1997) Cation ordering in synthetic layered double hydroxides. Clays Clay Miner 45:803–813

    Article  CAS  Google Scholar 

  • Waajen G, Van Oosterhout F, Douglas G, Lürling M (2016) Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant: lanthanum modified bentonite treatment. Water Res. doi:10.1016/j.watres2015.11.034

    Google Scholar 

  • Wada K (1959) Reaction of phosphate with allophane and halloysite. Soil Sci 87:325–330

    Article  CAS  Google Scholar 

  • Wada K (1980) Mineralogical characteristics of Andosols. In: Theng BKG (ed) Soils with variable charge. NZ Soil Sci Soc, pp 87–107

  • Wada K (1989) Allophane and imogolite. In: Dixon JB, Weed SB (eds) Minerals in soil environments, pp 1051–1087

  • Wang S, Ang HM, Tade MO (2008) Novel application of red mud as coagulant, absorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang H, Pan G (2016) Ecotoxicological assessment of flocculant modified soil for lake restoration using an integrated biotic toxicity index. Water Res. doi:10.1016/j.watres.2015.08.033

    Google Scholar 

  • Welch EB, Battebo SK, Gibbons HL, Plotnikoff RW (2015) A dramatic recovery of Lake Spokane water quality following wastewater phosphorus reduction. Lake Res Manag 31:157–165

    Article  CAS  Google Scholar 

  • Wendling LA, Douglas GB, Coleman S (2012a) Productive use of steelmaking by-product in environmental applications: II. Leachate geochemistry, ecotoxicity and environmental radioactivity. Miner Eng 39:219–227

    Article  CAS  Google Scholar 

  • Wendling LA, Douglas GB, Coleman S, Yuan Z (2012b) Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products. Water Res 46:2705–2717

    Article  CAS  PubMed  Google Scholar 

  • Wendling LA, Douglas GB, Coleman S, Yuan Z (2013) Nutrient and dissolved organic carbon removal from natural waters using industrial by-products. Sci Total Environ 442:63–72

    Article  CAS  PubMed  Google Scholar 

  • Wolter KD (1984) Phosphorus precipitation. In: Eiseltova M (ed) Restoration of lakes ecosystems: a holistic approach. Inland Waterfowl Wetland Res Bur 32:63–68

  • World Health Organization WHO (2008) World Health Organization WHO Guidelines for water quality, Vol 1, 3rd edition incorporating 1st and 2nd addenda World Health Organization, Geneva (2008)

  • Xie J, Wang Z, Fang D, Li C, Wu D (2014) Green synthesis of a novel hybrid sorbent of zeolite/lanthanum hydroxide and its application in the removal and recovery of phosphate from water. J Colloid Interface Sci 423:13–19

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Chen M, Zhou K, Wang Y, Yin H, Chen Z (2014) Retention of phosphorus on calcite and dolomite: speciation and modelling. RSC Adv 4:35205–35214

    Article  CAS  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu Y (2015) Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ Sci Tech 49:1051–1059

    Article  CAS  Google Scholar 

  • Yamada H, Kayama M, Saito K, Hara M (1986) A fundamental research on phosphate removal using slag. Water Res 20:547–557

    Article  CAS  Google Scholar 

  • Yamada H, Kayama M, Saito K, Hara M (1987) Suppression of phosphate liberation from sediment by using iron slag. Water Res 21:325–333

    Article  CAS  Google Scholar 

  • Yamada TM, Sueitt APE, Beraldo DAS, Botta CMR, Fadini PS, Nascimento MRL, Faria BM, Mozeto AA (2012) Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: microcosm experiments. Water Res 46:6463–6475

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Yan LG, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B (2014) Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: kinetics, isotherms and mechanisms. Sep Purif Technol 124:36–42

    Article  CAS  Google Scholar 

  • Yin H, Kong M, Fan C (2013) Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material. Water Res 47:4247–4258

    Article  CAS  PubMed  Google Scholar 

  • Yuan XZ, Pan G, Chen H, Tian H (2009) Phosphorus fixation in lake sediments using LaCl3-modified clays. Ecol Eng 35:1599–1602

    Article  Google Scholar 

  • Yuan YT, Zhang HG, Pan G (2015) Flocculation of cyanobacterial cells using coal fly ash modified chitosan. Water Res. doi:10.1016/j.watres.2015.12.003

    Google Scholar 

  • Zamparas M, Zacharias I (2014) Restoration of eutrophic freshwater by managing internal nutrient loads. Sci Total Environ 496:551–562

    Article  CAS  PubMed  Google Scholar 

  • Zhu T (1998) Phosphorus and nitrogen removal in light-weight aggregate (LWA) constructed wetlands and intermittent filter systems. DSc Thesis, Agricultural University, Norway

  • Zhu T, Jenssen PD, Mæhlum T, Krogstad T (1997) Phosphorus sorption and chemical characteristics of lightweight aggregates LWA: potential filter media in treatment wetlands. Water Sci Technol 35:103–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the CSIRO and Strategic Priority Research Program of Chinese Academy of Sciences (XDA09030203). This review contributes to a special issue on “Cyanobacterial blooms: ecology, prevention, mitigation and control” which has been initiated by the EU-CYANOCOST action ES1105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Douglas.

Additional information

Guest editors: Petra M. Visser, Bas W. Ibelings, Jutta Fastner & Myriam Bormans/Cyanobacterial blooms. Ecology, prevention, mitigation and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglas, G.B., Hamilton, D.P., Robb, M.S. et al. Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems. Aquat Ecol 50, 385–405 (2016). https://doi.org/10.1007/s10452-016-9575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9575-2

Keywords

Navigation