Skip to main content
Log in

Nonlocal operators with local boundary conditions in higher dimensions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present novel nonlocal governing operators in 2D/3D for wave propagation and diffusion. The operators are inspired by peridynamics. They agree with the original peridynamics operator in the bulk of the domain and simultaneously enforce local boundary conditions (BC). The main ingredients are periodic, antiperiodic, and mixed extensions of separable kernel functions together with even and odd parts of bivariate functions on rectangular/box domains. The operators are bounded and self-adjoint. We present all possible 36 different types of BC in 2D which include pure and mixed combinations of Neumann, Dirichlet, periodic, and antiperiodic BC. Our construction is systematic and easy to follow. We provide numerical experiments that verify our theoretical findings. We also compare the solutions of the classical wave and heat equations to their nonlocal counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aksoylu, B., Beyer, H.R., Celiker, F.: Application and implementation of incorporating local boundary conditions into nonlocal problems. Numer. Funct. Anal. Optim. 38(9), 1077–1114 (2017). https://doi.org/10.1080/01630563.2017.1320674

    Article  MathSciNet  MATH  Google Scholar 

  2. Aksoylu, B., Beyer, H.R., Celiker, F.: Theoretical foundations of incorporating local boundary conditions into nonlocal problems. Rep. Math. Phys. 40(1), 39–71 (2017). https://doi.org/10.1016/S0034-4877(17)30061-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Aksoylu, B., Celiker, F.: Comparison of Nonlocal Operators Utilizing Perturbation Analysis. In: Others, B.K. (ed.) Numerical Mathematics and Advanced Applications ENUMATH 2015, Lecture Notes in Computational Science and Engineering, vol. 112, pp 589–606. Springer (2016). https://doi.org/10.1007/978-3-319-39929-4_57

  4. Aksoylu, B., Celiker, F.: Nonlocal problems with local Dirichlet and Neumann boundary conditions. J. Mech. Mater. Struct. 12(4), 425–437 (2017). https://doi.org/10.2140/jomms.2017.12.425

    Article  MathSciNet  Google Scholar 

  5. Aksoylu, B., Celiker, F., Kilicer, O.: Nonlocal Problems with Local Boundary Conditions: An Overview. In: Voyiadjis, G.Z. (ed.) Handbook on Nonlocal Continuum Mechanics for Materials and Structures, pp 1–38. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-22977-5_34-1

  6. Aksoylu, B., Gazonas, G.A.: Inhomogeneous local boundary conditions in nonlocal problems. In: Proceedings of ECCOMAS2018, 6th European Conference on Computational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15. In press, Glasgow (2018)

  7. Aksoylu, B., Gazonas, G.A.: On nonlocal problems with inhomogeneous local boundary conditions. Submitted

  8. Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31(12), 1301–1317 (2010). https://doi.org/10.1080/01630563.2010.519136

    Article  MathSciNet  MATH  Google Scholar 

  9. Aksoylu, B., Parks, M.L.: Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comp. 217, 6498–6515 (2011). https://doi.org/10.1016/j.amc.2011.01.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52(2), 653–677 (2014). https://doi.org/10.1137/13092407X

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreu-Vaillo, F., Mazon, J.M., Rossi, J.D., Toledo-melero, J.: Nonlocal Diffusion problems, Mathematical Surveys and Monographs, vol. 165 American Mathematical Society and Real Socied Matematica Espanola (2010)

  12. Beyer, H.R., Aksoylu, B., Celiker, F.: On a class of nonlocal wave equations from applications. J. Math. Phy. 57(6), 062902 (2016). https://doi.org/10.1063/1.4953252. Eid: 062902

    Article  MathSciNet  MATH  Google Scholar 

  13. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 53, 4047–4059 (2010)

    Article  MATH  Google Scholar 

  14. Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231, 2764–2785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Part. Diff. Eqs. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grote, M.J., Schneebeli, A., Schötzau, D.: Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamwal, R.P.: Linear Integral Equations: Theory and Technique. 2, Boston (1997)

    Book  Google Scholar 

  21. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8465-3

    Book  MATH  Google Scholar 

  22. Mitchell, J.A., Silling, S.A., Littlewood, D.J.: A position-aware linear solid constitutive model for peridynamics. J. Mech. Mater. Struct. 10(5), 539–557 (2015)

    Article  MathSciNet  Google Scholar 

  23. Moiseiwistch, B.: Integral Equations. Longman Inc., New York (1977)

    Google Scholar 

  24. Nochetto, R.H., Otarola, E., Salgado, A.J.: a PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51(6), 3458–3482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Burak Aksoylu was supported in part by the European Commission Marie Curie Career Integration 293978 grant, and Scientific and Technological Research Council of Turkey (TÜ BİTAK) MFAG 115F473 grant. Portion of his work was also supported in part by the Oak Ridge Institute for Science and Engineering (ORISE) contract 1120-1120-99 at the US Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Aksoylu.

Additional information

Communicated by: Ilaria Perugia

The original version of this article was revised: In the original publication, Figure 4 image should be Figure 5 and Figure 5 image was a repetition of Figure 6. The original article was updated by correcting the images of figures 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoylu, B., Celiker, F. & Kilicer, O. Nonlocal operators with local boundary conditions in higher dimensions. Adv Comput Math 45, 453–492 (2019). https://doi.org/10.1007/s10444-018-9624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9624-6

Keywords

Mathematics Subject Classification (2010)

Navigation