Skip to main content

Advertisement

Log in

A Finite Element Model of the Lower Limb for Simulating Automotive Impacts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A finite element (FE) model of a vehicle occupant’s lower limb was developed in this study to improve understanding of injury mechanisms during traffic crashes. The reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male was meshed using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The models of the femur, tibia, and leg were validated against Post-Mortem Human Surrogate (PMHS) data in various loading conditions which generates the bone fractures observed in traffic accidents. The model was then used to investigate the tolerances of femur and tibia under axial compression and bending. It was shown that the bending moment induced by the axial force reduced the bone tolerance significantly more under posterior-anterior (PA) loading than under anterior-posterior (AP) loading. It is believed that the current lower limb models could be used in defining advanced injury criteria of the lower limb and in various applications as an alternative to physical testing, which may require complex setups and high cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Adam, T., and C. D. Untaroiu. Identification of occupant posture using a bayesian classification methodology to reduce the risk of injury in a collision. Transp. Res. C: Emerg. Technol. 19(6):1078–1094, 2011.

    Article  Google Scholar 

  2. Balasubramanian, S., P. Beillas, A. Belwadi, W. N. Hardy, K. H. Yang, A. I. King, and M. Masuda. Below knee impact responses using cadaveric specimens. Stapp Car Crash J. 48:71–88, 2004.

    PubMed  Google Scholar 

  3. Behr, M., P. J. Arnoux, T. Serre, L. Thollon, and C. Brunet. Tonic finite element model of the lower limb. J. Biomech. Eng. 128(2):223–228, 2006.

    Article  PubMed  Google Scholar 

  4. Beillas, P., P. C. Begeman, K. H. Yang, A. I. King, P. J. Arnoux, H. S. Kang, K. Kayvantash, C. Brunet, C. Cavallero, and P. Prasad. Lower limb: advanced FE model and new experimental data. Stapp Car Crash J. 45:469–494, 2001.

    PubMed  CAS  Google Scholar 

  5. Brown, T. D., and M. S. Vrahas. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 2:32–38, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Budyn, E., T. Hoc, and J. Jonvaux. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput. Mech. 42(4):579–591, 2008.

    Article  Google Scholar 

  7. Chandler, R. F., C. E. Clauser, J. T. McConville, H. M. Reynolds, and J. W. Young. Investigation of inertial properties of the human body. AMRL-TR-75-137. Wright Patterson Air Force Base, OH, 1975.

  8. Crandall, J. R., D. Bose, J. Forman, C. Arregui-Dalmases, C. D. Untaroiu, C. G. Shaw, and J. R. Kerrigan. A review of human surrogates for injury biomechanics research. Clin. Anat. 24(3):362–371, 2011.

    Article  PubMed  CAS  Google Scholar 

  9. Dar, F. H., J. R. Meakin, and R. M. Aspden. Statistical methods in finite element analysis. J. Biomech. 35:1155–1161, 2002.

    Article  PubMed  Google Scholar 

  10. Dischinger, P. C., K. M. Read, J. A. Kufera, T. J. Kerns, C. A. Burch, N. Jawed, S. M. Ho, and A. R. Burgess. Consequences and costs of lower extremity injuries. Annu. Proc. Assoc. Adv. Automot. Med. 48:339–353, 2004.

    PubMed  CAS  Google Scholar 

  11. Evans, F. G., and A. I. King. Regional differences in some physical properties of human spongy bone. In: Biomechanical Studies of the Musculoskeletal System, edited by F. G. Evans. Springfield: C.C. Thomas, 1961.

    Google Scholar 

  12. Froimson, M. I., A. Ratcliffe, T. R. Gardner, and V. C. Mow. Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthritis Cartilage 5(6):377–386, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Funk, J. R., J. R. Kerrigan, and J. R. Crandall. Dynamic bending tolerance and elastic-plastic material properties of the human femur. Annu. Proc. Assoc. Adv. Automot. Med. 48:215–233, 2004.

    PubMed  CAS  Google Scholar 

  14. Funk, J. R., R. W. Rudd, J. R. Kerrigan, and J. R. Crandall. The effect of tibial curvature and fibular loading on the tibia index. Traffic Injury Prev. 5(2):164–172, 2004.

    Article  Google Scholar 

  15. Gayzik, F. S., D. P. Moreno, K. A. Danelson, C. McNally, K. D. Klinich, and J. D. Stitzel. External landmark, body surface, and volume data of a mid-sized male in seated and standing postures. Ann. Biomed. Eng. 40(9):2019–2032, 2012.

    Article  PubMed  CAS  Google Scholar 

  16. Gayzik, F. S., D. Moreno, C. Greer, S. Wuertzer, R. Martin, and J. D. Stitzel. Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39(10):2568–2583, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbetts, and R. A. Walker. 1988 anthropometric survey of US army personnel: methods and summary statistics. TR-89-044, 1989.

  18. Haug, E., H.-Y. Choi, S. Robin, and M. Beaugonin. Human models for crash and impact simulation. In: Computational Models for the Human Body, Special Volume of Handbook of Numerical Analyses, edited by N. Ayache (guest editor), Ph. Ciarlet (Series editor), Vol. XII. San Diego: Elsevier, 2004.

  19. Hayashi, S., H. Y. Choi, R. S. Levine, K. H. Yang, and A. I. King. Experimental and analytical study of knee fracture mechanisms in a frontal knee impact. Stapp Car Crash J. 40:962423, 1996.

    Google Scholar 

  20. Herman, I. P. Physics of the Human Body. Berlin: Springer, 2007.

    Book  Google Scholar 

  21. Ivarsson, B. J., D. Genovese, J. R. Crandall, J. Bolton, C. Untaroiu, and D. Bose. The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash J. 53:251–290, 2009.

    PubMed  Google Scholar 

  22. Ivarsson, B. J., A. Manaswi, D. Genovese, J. R. Crandall, S. Hurwitz, C. Burke, and S. Fahkry. Site, type, and local mechanism of tibial shaft fracture in drivers in frontal automobile crashes. Forensic Sci. Int. 175(2–3):186–192, 2008.

    Article  PubMed  Google Scholar 

  23. Iwamoto, M., K. Miki, and E. Tanaka. Ankle skeletal injury predictions using anisotropic inelastic constitutive. Stapp Car Crash J. 49:133–156, 2005.

    PubMed  Google Scholar 

  24. Keller, T. S., Z. Mao, and D. M. Spengler. Young’s modulus, bending strength, and tissue physical properties of human compact bone. J. Orthop. Res. 8:592–603, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Kemper, A. R., C. McNally, S. J. Manoogian, and S. M. Duma. Tensile material properties of human tibia cortical bone effects of orientation and loading rate. Biomed. Sci. Instrum. 44:419–427, 2008.

    PubMed  Google Scholar 

  26. Kennedy, E. A., W. J. Hurst, J. D. Stitzel, J. M. Cormier, G. A. Hansen, E. P. Smith, and S. M. Duma. Lateral and posterior dynamic bending of the mid-shaft femur: fracture risk curves for the adult population. Stapp Car Crash J. 48:27–51, 2004.

    PubMed  Google Scholar 

  27. Keyak, J. H., S. A. Rossi, K. A. Jones, C. M. Les, and H. B. Skinner. Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23:657–664, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Keyak, J. H., S. A. Rossi, K. A. Jones, and H. B. Skinner. Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31:125–133, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Kim, Y. S., H. H. Choi, Y. N. Cho, Y. J. Park, J. B. Lee, K. H. Yang, and A. I. King. Numerical investigations of interactions between the knee–thigh–hip complex with vehicle Interior structures. Stapp Car Crash J. 49:85–115, 2005.

    PubMed  Google Scholar 

  30. Kuppa, S. and O. Fessahaie. An overview of knee–thigh–hip injuries in frontal crashes in the United States. Proceedings of the 18th International Technical Conference on Experimental Safety Vehicles, Nagoya, Japan, 2003.

  31. Kuppa, S, J. Wang, M. Haffner, and R. Eppinger. Lower extremity injuries and associated injury criteria. Proceedings of 17th ESV Conference, Paper No. 457, pp. 1–15, 2001.

  32. Laituri, T. R., S. Henry, K. Sullivan, and P. Prasad. Derivation and theoretical assessment of a set of biomechanics-based AIS 2+ risk equations for the knee–thigh–hip-complex. Stapp Car Crash J. 50:97–130, 2006.

    PubMed  Google Scholar 

  33. Lotz, J. C., T. N. Gerhart, and W. C. Hayes. Mechanical properties of metaphyseal bone in the proximal femur. J. Biomech. 24(5):317–329, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Luo, C. F. Reference axes for reconstruction of the knee. Knee 11:251–257, 2004.

    Article  PubMed  Google Scholar 

  35. Maeno T, Hasegawa J. Development of a finite element model of the Total Human Model for Safety (THUMS) and application to Car-pedestrian impacts. ESV Conference 17(494), 2001.

  36. Martens, M., R. Van Audekercke, P. Delport, P. De Meester, and J. C. Mulier. The mechanical characteristics of cancellous bone at the upper femoral region. J. Biomech. 16(12):971–983, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Mertz, H. Anthropometric test device. In: Accidental Injury: Biomechanics, and Prevention, edited by A. Nahum, and J. Melvin. New York: Springer, 1993.

    Google Scholar 

  38. Mischinski, S., and A. Ural. Finite element modeling of micro-crack growth in cortical bone. J. Appl. Mech. 78:041016, 2011.

    Article  Google Scholar 

  39. Morgan, R. M., R. Eppinger, J. Marcus, and H. Nichols. Human cadaver and hybrid III responses to axial impacts of the femur. Proceedings of the International IRCOBI on Biomechanics Impacts, 1990.

  40. Nalla, R. K., J. H. Kinney, and R. O. Ritchie. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2:164–168, 2003.

    Article  PubMed  CAS  Google Scholar 

  41. New Car Assessment Program (NCAP). The New Car Assessment Program Suggested Approaches for Future Program Enhancements, DOT HS 810-698, 2007.

  42. Robbins, D. H., L. W. Schneider, and M. Haffner. Seated posture of vehicle occupants. Stapp Car Crash Conference Proceedings No. 831617, 1983.

  43. Schauer, D. A., S. Perfect, and J. Weiss. Finite element modeling of the human anatomic pelvis and leg. National Highway Traffic Safety Administration (NHTSA), 1997.

  44. Schreiber, P., J. Crandall, S. Hurwitz, and G. S. Nusholtz. Static and dynamic bending strength of the leg. Int. J. Crash 3(3):295–308, 1998.

    Article  Google Scholar 

  45. Schuster, P. J., C. C. Chou, P. Prasad, and G. Jayaraman. Development and validation of a pedestrian lower limb non-linear 3-D finite element model. Stapp Car Crash J. 44:315–334, 2000.

    PubMed  CAS  Google Scholar 

  46. Shin, J., N. Yue, and C. D. Untaroiu. A finite element model of the foot and ankle for automotive impact applications. Ann. Biomed. Eng., 2012. doi:10.1007/s10439-012-0607-3.

  47. Silvestri, C., and M. H. Ray. Development of a finite element model of the knee–thigh–hip of a 50 percentile male including ligaments and muscles. Int. J. Crashworthiness 14(2):215–229, 2009.

    Article  Google Scholar 

  48. Spethmann, P., and C. Herstatt. Crash simulation evolution and its impact on R&D in the automotive applications. Int. J. Prod. Dev. 8(3):291–305, 2009.

    Article  Google Scholar 

  49. Takahashi, Y., Y. Kikuchi, A. Konosu, and H. Ishikawa. Advanced FE lower limb for pedestrians. Stapp Car Crash J. 44:335–355, 2000.

    PubMed  CAS  Google Scholar 

  50. Taylor, A., A. Morris, P. Thomas, and A. Wallace. Mechanisms of lower extremity injuries to front seat car occupants—an in depth accident analysis. International IRCOBI Conference on the Biomechanics of Impact, pp. 53–72, 1997.

  51. Untaroiu, C. D. Development and Validation of a Finite Element Model of Human Lower Limb. PhD Dissertation, University of Virginia, 2005.

  52. Untaroiu, C. D. A numerical investigation of mid-femoral injury tolerance in axial compression and bending loading. Int. J. Crashworthiness 15(1):83–92, 2010.

    Article  Google Scholar 

  53. Untaroiu, C. D., J. Crandall, Y. Takahashi, M. Okamoto, O. Ito, and R. Fredriksson. Analysis of running child pedestrians impacted by a vehicle using rigid-body models and optimization techniques. Saf. Sci. 48(2):259–267, 2010.

    Article  Google Scholar 

  54. Untaroiu, C., K. Darvish, J. Crandall, B. Deng, and J. T. Wang. A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash J. 49:157–181, 2005.

    PubMed  Google Scholar 

  55. Untaroiu, C. D., B. J. Ivarsson, D. Genovese, D. Bose, and J. R. Crandall. Biomechanical injury response of leg subjected to dynamic combined axial and bending loading. Biomed. Sci. Instrum. 44:141–146, 2008.

    PubMed  Google Scholar 

  56. Untaroiu, C. D., M. Meissner, J. Crandall, Y. Takahashi, M. Okamoto, and O. Ito. Crash reconstruction of pedestrian accidents using optimization techniques. Int. J. Impact Eng. 36(2):210–219, 2009.

    Article  Google Scholar 

  57. Untaroiu, C. D., J. Shin, J. Ivarsson, J. Crandall, D. Subit, Y. Takahashi, A. Akiyama, and Y. Kikuchi. A study of the pedestrian impact kinematics using finite element dummy models: the corridors and dimensional analysis scaling of upper-body trajectories. Int. J. Crashworthiness 13(5):469–478, 2008.

    Article  Google Scholar 

  58. Untaroiu, C. D., and T. Adam. Performance-based classification of occupant posture to reduce the risk of injury in a collision. IEEE Trans. Intell. Transport. Syst., 2012. doi:10.1109/TITS.2012.2223687.

  59. Yamada, H. Strength of Biological Materials. Baltimore: The Williams & Wilkins Company, 1970.

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Global Human Body Models Consortium, LLC (GHBMC) through grant: GHBMC-PLEXM-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costin D. Untaroiu.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Untaroiu, C.D., Yue, N. & Shin, J. A Finite Element Model of the Lower Limb for Simulating Automotive Impacts. Ann Biomed Eng 41, 513–526 (2013). https://doi.org/10.1007/s10439-012-0687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0687-0

Keywords

Navigation