Skip to main content
Log in

Microtechnology for Mimicking In Vivo Tissue Environment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microtechnology provides a new approach for reproducing the in vivo environment in vitro. Mimicking the microenvironment of the natural tissues allows cultured cells to behave in a more authentic manner, and gives researchers more realistic platforms to study biological systems. In this review article, we discuss the physiochemical aspects of in vivo cellular microenvironment, and relevant technologies that can be used to mimic those aspects. Secondly we identify the core methods used in microtechnology for biomedical applications. Finally we examine the recent application areas of microtechnology, with a focus on reproducing the functions of specific organs, or whole-body response such as homeostasis or metabolism-dependent toxicity of drugs. These new technologies enable researchers to ask and answer questions in a manner that has not been possible with conventional, macroscale technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Allen, J. W., S. R. Khetani, and S. N. Bhatia. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84(1):110–119, 2005.

    Article  PubMed  CAS  Google Scholar 

  2. Artursson, P., K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46(1–3):27–43, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Baudoin, R., A. Corlu, L. Griscom, C. Legallais, and E. Leclerc. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol. In Vitro 21(4):535–544, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett, M. R., and J. Hasty. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10(9):628–638, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Bergman, R. N. Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes 56(6):1489–1501, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Bhatia, S. N., M. L. Yarmush, and M. Toner. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34(2):189–199, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Brandon, E. F., C. D. Raap, I. Meijerman, J. H. Beijnen, and J. H. Schellens. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol. Appl. Pharmacol. 189(3):233–246, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Burgess, K. A., H. H. Hu, W. R. Wagner, and W. J. Federspiel. Towards microfabricated biohybrid artificial lung modules for chronic respiratory support. Biomed. Microdevices 11(1):117–127, 2009.

    Article  PubMed  Google Scholar 

  9. Camp, J. P., T. Stokol, and M. L. Shuler. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching. Biomed. Microdevices 10(2):179–186, 2008.

    Article  PubMed  Google Scholar 

  10. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. De Smet, K., T. Bruning, M. Blaszkewicz, H. M. Bolt, A. Vercruysse, and V. Rogiers. Biotransformation of trichloroethylene in collagen gel sandwich cultures of rat hepatocytes. Arch. Toxicol. 74(10):587–592, 2000.

    Article  PubMed  Google Scholar 

  12. Dittrich, P. S., and A. Manz. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5(3):210–218, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Douville, N. J., P. Zamankhan, Y. C. Tung, R. Li, B. L. Vaughan, C. F. Tai, J. White, P. J. Christensen, J. B. Grotberg, and S. Takayama. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4):609–619, 2011.

    Article  PubMed  CAS  Google Scholar 

  14. Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11(1–2):302–309, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Geckil, H., F. Xu, X. Zhang, S. Moon, and U. Demirci. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond.) 5(3):469–484, 2010.

    Article  CAS  Google Scholar 

  16. Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6):720–725, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Guillaume-Gentil, O., M. Gabi, M. Zenobi-Wong, and J. Voros. Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets. Biomed. Microdevices 13(1):221–230, 2011.

    Article  PubMed  Google Scholar 

  18. Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29(4):183–190, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Guzzardi, M. A., C. Domenici, and A. Ahluwalia. Metabolic control through hepatocyte and adipose tissue cross-talk in a multicompartmental modular bioreactor. Tissue Eng. A 17(11–12):1635–1642, 2011.

    Article  CAS  Google Scholar 

  20. Honarmandi, P., H. Lee, M. J. Lang, and R. D. Kamm. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 11(4):684–694, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Hosmane, S., A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I. H. Yang, K. T. Ramesh, A. Venkatesan, and N. Thakor. Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip 11(22):3888–3895, 2011.

    Article  PubMed  CAS  Google Scholar 

  22. Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668, 2010.

    Article  PubMed  CAS  Google Scholar 

  23. Humes, H. D., W. H. Fissell, and K. Tiranathanagul. The future of hemodialysis membranes. Kidney Int. 69(7):1115–1119, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Ismagilov, R. F., and M. M. Maharbiz. Can we build synthetic, multicellular systems by controlling developmental signaling in space and time? Curr. Opin. Chem. Biol. 11(6):604–611, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Jeong, G. S., S. Chung, C. B. Kim, and S. H. Lee. Applications of micromixing technology. Analyst 135(3):460–473, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Kang, J. H., Y. C. Kim, and J. K. Park. Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 8(1):176–178, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Keenan, T. M., and A. Folch. Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Khademhosseini, A., and R. Langer. Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Khaleque, T., S. Abu-Salih, J. R. Saunders, and W. Moussa. Experimental methods of actuation, characterization and prototyping of hydrogels for bioMEMS/NEMS applications. J. Nanosci. Nanotechnol. 11(3):2470–2479, 2011.

    Article  PubMed  CAS  Google Scholar 

  31. Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1):120–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S., H. J. Kim, and N. L. Jeon. Biological applications of microfluidic gradient devices. Integr. Biol. (Camb.) 2(11-12):584–603, 2010.

    Article  CAS  Google Scholar 

  33. Kim, L., M. D. Vahey, H. Y. Lee, and J. Voldman. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6(3):394–406, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, S. J., F. Wang, M. A. Burns, and K. Kurabayashi. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Anal. Chem. 81(11):4510–4516, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, K., C. Kim, B. Ahn, R. Panchapakesan, A. R. Full, L. Nordee, J. Y. Kang, and K. W. Oh. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, M. Y., R. A. Kumar, S. M. Sukumaran, M. G. Hogg, D. S. Clark, and J. S. Dordick. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105(1):59–63, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, S. H., D. van Noort, J. Y. Lee, B. T. Zhang, and T. H. Park. Effective mixing in a microfluidic chip using magnetic particles. Lab Chip. 9(3):479–482, 2009.

    Article  PubMed  CAS  Google Scholar 

  38. Lehmann, A. D., N. Daum, M. Bur, C. M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur. J. Pharm. Biopharm. 77(3):398–406, 2011.

    Article  PubMed  CAS  Google Scholar 

  39. Leonard, E. F., S. Cortell, and N. G. Vitale. Membraneless dialysis—is it possible? Contrib. Nephrol. 149:343–353, 2005.

    Article  PubMed  Google Scholar 

  40. Li Jeon, N., H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8):826–830, 2002.

    PubMed  Google Scholar 

  41. Lu, H., L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76(18):5257–5264, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Lucchetta, E. M., J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Ma, B., G. Zhang, J. Qin, and B. Lin. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9(2):232–238, 2009.

    Article  PubMed  CAS  Google Scholar 

  44. Mahler, G. J., M. B. Esch, R. P. Glahn, and M. L. Shuler. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104(1):193–205, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Mahler, G. J., M. L. Shuler, and R. P. Glahn. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20(7):494–502, 2009.

    Article  PubMed  CAS  Google Scholar 

  46. McGuigan, A. P., and M. V. Sefton. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. USA 103(31):11461–11466, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Meyvantsson, I., J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8(5):717–724, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Milosevic, N., H. Schawalder, and P. Maier. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes. Eur. J. Pharmacol. 368(1):75–87, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Moon, J. J., and J. L. West. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top Med. Chem. 8(4):300–310, 2008.

    Article  PubMed  CAS  Google Scholar 

  50. Morier, P., C. Vollet, P. E. Michel, F. Reymond, and J. S. Rossier. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests. Electrophoresis 25(21–22):3761–3768, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Mrksich, M., L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235(2):305–313, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Musi, N., and L. J. Goodyear. Insulin resistance and improvements in signal transduction. Endocrine 29(1):73–80, 2006.

    Article  PubMed  CAS  Google Scholar 

  53. Nahmias, Y., F. Berthiaume, and M. L. Yarmush. Integration of technologies for hepatic tissue engineering. Adv. Biochem. Eng. Biotechnol. 103:309–329, 2007.

    PubMed  Google Scholar 

  54. Orr, D. E., and K. J. Burg. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann. Biomed. Eng. 36(7):1228–1241, 2008.

    Article  PubMed  Google Scholar 

  55. Park, T. H., and M. L. Shuler. Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19(2):243–253, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Pelkonen, O., and M. Turpeinen. In vitro–in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37(10–11):1066–1089, 2007.

    Article  PubMed  CAS  Google Scholar 

  57. Ramello, C., P. Paullier, A. Ould-Dris, M. Monge, C. Legallais, and E. Leclerc. Investigation into modification of mass transfer kinetics by acrolein in a renal biochip. Toxicol. In Vitro 25(5):1123–1131, 2011.

    Article  PubMed  CAS  Google Scholar 

  58. Saadi, W., S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5):627–635, 2007.

    Article  PubMed  Google Scholar 

  59. Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2(3):032001, 2010.

    Article  PubMed  Google Scholar 

  60. Shah, R. K., and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Advances in Heat Transfer Supplement. New York: Academic Press, xiv, 477 pp., 1978.

  61. Sharma, R. I., and J. G. Snedeker. Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31(30):7695–7704, 2010.

    Article  PubMed  CAS  Google Scholar 

  62. Sin, A., K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20(1):338–345, 2004.

    Article  PubMed  CAS  Google Scholar 

  63. Sivaraman, A., J. K. Leach, S. Townsend, T. Iida, B. J. Hogan, D. B. Stolz, R. Fry, L. D. Samson, S. R. Tannenbaum, and L. G. Griffith. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6(6):569–591, 2005.

    Article  PubMed  CAS  Google Scholar 

  64. Skelley, A. M., and J. Voldman. An active bubble trap and debubbler for microfluidic systems. Lab Chip 8(10):1733–1737, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Stoltz, J. F., S. Muller, A. Kadi, V. Decot, P. Menu, and D. Bensoussan. Introduction to endothelial cell biology. Clin. Hemorheol. Microcirc. 37(1–2):5–8, 2007.

    PubMed  CAS  Google Scholar 

  66. Stroock, A. D., and C. Fischbach. Microfluidic culture models of tumor angiogenesis. Tissue Eng. A 16(7):2143–2146, 2010.

    Article  Google Scholar 

  67. Sundararaghavan, H. G., G. A. Monteiro, B. L. Firestein, and D. I. Shreiber. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102(2):632–643, 2009.

    Article  PubMed  CAS  Google Scholar 

  68. Sung, J. H., M. B. Esch, and M. L. Shuler. Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin. Drug Metab. Toxicol. 6(9):1063–1081, 2010.

    Article  PubMed  CAS  Google Scholar 

  69. Sung, J. H., C. Kam, and M. L. Shuler. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455, 2010.

    Article  PubMed  CAS  Google Scholar 

  70. Sung, J. H., and M. L. Shuler. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10):1385–1394, 2009.

    Article  PubMed  CAS  Google Scholar 

  71. Sung, J. H., and M. L. Shuler. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed. Microdevices 11(4):731–738, 2009.

    Article  PubMed  Google Scholar 

  72. Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392, 2011.

    Article  PubMed  CAS  Google Scholar 

  73. Toepke, M. W., and D. J. Beebe. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486, 2006.

    Article  PubMed  CAS  Google Scholar 

  74. Torisawa, Y. S., B. Mosadegh, G. D. Luker, M. Morell, K. S. O’Shea, and S. Takayama. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. (Camb.) 1(11–12):649–654, 2009.

    Article  CAS  Google Scholar 

  75. Tsang, V. L., and S. N. Bhatia. Fabrication of three-dimensional tissues. Adv. Biochem. Eng. Biotechnol. 103:189–205, 2007.

    PubMed  CAS  Google Scholar 

  76. Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275(6 Pt 1):L1173–L1183, 1998.

    PubMed  CAS  Google Scholar 

  77. Tse, J. R., and A. J. Engler. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6(1):e15978, 2011.

    Article  PubMed  CAS  Google Scholar 

  78. van Midwoud, P. M., M. T. Merema, E. Verpoorte, and G. M. Groothuis. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10(20):2778–2786, 2010.

    Article  PubMed  Google Scholar 

  79. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.

    Article  PubMed  CAS  Google Scholar 

  80. Viravaidya, K., A. Sin, and M. L. Shuler. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1):316–323, 2004.

    Article  PubMed  CAS  Google Scholar 

  81. Vozzi, F., J. M. Heinrich, A. Bader, and A. D. Ahluwalia. Connected culture of murine hepatocytes and HUVEC in a multicompartmental bioreactor. Tissue Eng. A 15(6):1291–1299, 2009.

    Article  CAS  Google Scholar 

  82. Wang, F., V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu, and M. J. Bissell. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl. Acad. Sci. USA 95(25):14821–14826, 1998.

    Article  PubMed  CAS  Google Scholar 

  83. Whitesides, G. M. The origins and the future of microfluidics. Nature 442(7101):368–373, 2006.

    Article  PubMed  CAS  Google Scholar 

  84. Wnek, G. E., and G. L. Bowlin. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker, 2004.

    Google Scholar 

  85. Wright, D., B. Rajalingam, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Lab Chip 7(10):1272–1279, 2007.

    Article  PubMed  CAS  Google Scholar 

  86. Xiao, Y., and G. A. Truskey. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys. J. 71(5):2869–2884, 1996.

    Article  PubMed  CAS  Google Scholar 

  87. Young, E. W., and D. J. Beebe. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39(3):1036–1048, 2010.

    Article  PubMed  CAS  Google Scholar 

  88. Young, E. W., and C. A. Simmons. Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10(2):143–160, 2010.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang, W., S. Lin, C. Wang, J. Hu, C. Li, Z. Zhuang, Y. Zhou, R. A. Mathies, and C. J. Yang. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9(21):3088–3094, 2009.

    Article  PubMed  CAS  Google Scholar 

  90. Zheng, Y., W. Dai, and H. Wu. A screw-actuated pneumatic valve for portable, disposable microfluidics. Lab Chip 9(3):469–472, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Army Corp of Engineers (CERL, W9132T-07), Nanobiotechnology center (NBTC), National Research Foundation of Korea (NRF, Grant no. 2011-0013862), Hongik University new faculty research support fund, and 2011 Hongik University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Shuler.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, J.H., Shuler, M.L. Microtechnology for Mimicking In Vivo Tissue Environment. Ann Biomed Eng 40, 1289–1300 (2012). https://doi.org/10.1007/s10439-011-0491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0491-2

Keywords

Navigation