Skip to main content
Log in

DT-MRI Based Computation of Collagen Fiber Deformation in Human Articular Cartilage: A Feasibility Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Accurate techniques for simulating the deformation of soft biological tissues are an increasingly valuable tool in many areas of biomechanical analysis and medical image computing. To model the complex morphology and response of articular cartilage, a hyperviscoelastic (dispersed) fiber-reinforced constitutive model is employed to complete two specimen-specific finite element (FE) simulations of an indentation experiment, with and without considering fiber dispersion. Ultra-high field Diffusion Tensor Magnetic Resonance Imaging (17.6 T DT-MRI) is performed on a specimen of human articular cartilage before and after indentation to ∼20% compression. Based on this DT-MRI data, we detail a novel FE approach to determine the geometry (edge detection from first eigenvalue), the meshing (semi-automated smoothing of DTI measurement voxels), and the fiber structural input (estimated principal fiber direction and dispersion). The global and fiber fabric deformations of both the un-dispersed and dispersed fiber models provide a satisfactory match to that estimated experimentally. In both simulations, the fiber fabric in the superficial and middle zones becomes more aligned with the articular surface, although the dispersed model appears more consistent with the literature. In the future, a multi-disciplinary combination of DT-MRI and numerical simulation will allow the functional state of articular cartilage to be determined in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Fig. 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Abdullah, O. M., S. F. Othman, X. J. Zhou, and R. L. Magin. Diffusion tensor imaging as an early marker for osteoarthritis. Proc. Intl. Soc. Magn. Reson. Med. 15:814, 2007.

    Google Scholar 

  2. Alexander, A. L., K. Hasan, G. Kindlmann, D. L. Parker, and J. S. Tsuruda. A geometric analysis of diffusion tensor measurements of the human brain. Magn. Reson. Med. 44:283–291, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Arsigny, V., P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29:328–347, 2006.

    Article  Google Scholar 

  4. Bachrach, N. M., V. C. Mow, and F. Guilak. Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31:445–451, 1998.

    Article  Google Scholar 

  5. Bastin, M. E., P. A. Armitage, and I. Marshall. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn. Reson. Imaging 16(7):773–785, 1998.

    Article  Google Scholar 

  6. Benninghoff, A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. II. Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Zeitschrift für Zellforschung und mikroskopische Anatomie 2:783–862, 1925.

    Article  Google Scholar 

  7. Bodammer, N., J. Kaufmann, M. Kanowski, and C. Tempelman. Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn. Reson. Med. 51:188–193, 2004.

    Article  Google Scholar 

  8. Boskey, A., and N. P. Camacho. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478, 2007.

    Article  Google Scholar 

  9. Broom, N. D. Further insights into the structural principles governing the function of articular cartilage. J. Anat. 139:275–294, 1984.

    Google Scholar 

  10. Broom, N. D., and R. Flachsmann. Physical indicators of cartilage health: the relevance of compliance, thickness, swelling and fibrillar texture. J. Anat. 202:481–494, 2003.

    Article  Google Scholar 

  11. Burstein, D., and M. L. Gray. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthr. Cartil. 14:1087–1090, 2006.

    Article  Google Scholar 

  12. Charlebois, M., M. D. McKee, and M. D. Buschmann. Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth. J. Biomech. Eng. 126:129–137, 2004.

    Article  Google Scholar 

  13. Clark, J. M. The organization of collagen fibrils in the superficial zones of articular cartilage. J. Anat. 171:117–130, 1990.

    CAS  PubMed  Google Scholar 

  14. Demiray, H. A note on the elasticity of soft biological tissues. J. Biomech. 5:309–311, 1972.

    Article  Google Scholar 

  15. Deng, X., M. Farley, M. T. Nieminen, M. Gray, and D. Burstein. Diffusion tensor imaging of native and degenerated human articular cartilage. Magn. Reson. Med. 25(2):168–171, 2007.

    Google Scholar 

  16. de Visser, S. K., J. C. Bowden, E. Wentrup-Bryne, L. Rintoul, T. Bostrom, J. M. Pope, and K. I. Momot. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthr. Cartil. 16:689–697, 2008.

    Article  Google Scholar 

  17. de Visser, S. K., R. W. Crawford, and J. M. Pope. Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthr. Cartil. 16:83–89, 2008.

    Article  Google Scholar 

  18. DiSilvestro, M. R., and J.-K. F. Suh. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34:519–525, 2001.

    Article  Google Scholar 

  19. Ennis, D. B., G. Kindlman, I. Rodriguez, P. A. Helm, and E. R. McVeigh. Visualization of tensor fields using superquadric glyphs. Magn. Reson. Med. 53:169–176, 2005.

    Article  Google Scholar 

  20. Filidoro, L., O. Dietrich, J. Weber, E. Rauch, T. Oether, M. Wick, M. F. Reiser, and C. Glaser. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn. Reson. Med. 53:993–998, 2005.

    Article  Google Scholar 

  21. García, J. J., and D. H. Cortés. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data. J. Biomech. 40:1737–1744, 2007.

    Article  Google Scholar 

  22. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  Google Scholar 

  23. Gere, J. M., and S. P. Timoshenko. Mechanics of Materials, 4th edn. Boston, MA: PWS-KENT Pub. Co., 1997.

  24. Glaser, C., and R. Putz. Functional anatomy of articular cartilage under compressive loading quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity. Osteoarthr. Cartil. 10:83–99, 2002.

    Article  Google Scholar 

  25. Hayes, W. C., and A. J. Bodine. Flow-independent viscoelastic properties of articular cartilage matrix. J. Biomech. 11:407–419, 1978.

    Article  Google Scholar 

  26. Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: Wiley, 2000.

    Google Scholar 

  27. Holzapfel, G. A., and T. C. Gasser. A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Meth. Appl. Mech. Eng. 190:4379–4403, 2001.

    Article  Google Scholar 

  28. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.

    Article  Google Scholar 

  29. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126:264–275, 2004.

    Article  Google Scholar 

  30. Huang, C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38:799–809, 2005.

    Article  Google Scholar 

  31. Jeffery, A. K., G. W. Blunn, C. W. Archer, and G. Bentley. Three-dimensional collagen architecture in bovine articular cartilage. J. Bone Joint Surg. Br. 73:795–801, 1991.

    CAS  PubMed  Google Scholar 

  32. Julkunen, P., P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J. Biomech. 40:1862–1870, 2007.

    Article  Google Scholar 

  33. Julkunen, P., R. K. Korhonen, W. Herzog, and J. S. Jurvelin. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Med. Eng. Phys. 30:506–515, 2008.

    Article  Google Scholar 

  34. Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J. Biomech. 30:235–241, 1997.

    Article  Google Scholar 

  35. Kaab, M. J., I. A. Gwynn, and H. P. Notzli. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J. Anat. 193:23–34, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Kaab, M. J., K. Ito, J. M. Clark, and H. P. Notzli. Deformation of articular cartilage collagen structure under static and cyclic loading. J. Orthop. Res. 16:743–751, 1998.

    Article  Google Scholar 

  37. Kaab, M. J., K. Ito, B. Rahn, J. M. Clark, and H. P. Notzli. Effect of mechanical load on articular cartilage collagen structure: a scanning electron-microscope study. J. Anat. 167:106–120, 2000.

    CAS  Google Scholar 

  38. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting. Int. J. Numer. Meth. Eng. 75:826–855, 2008.

    Article  Google Scholar 

  39. Le Bihan, D., J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and applications. J. Musculoskel. Neuron. Interact. 13:534–546, 2001.

    Google Scholar 

  40. Li, L. P., and W. Herzog, The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology 41:181–194, 2004.

    Google Scholar 

  41. Li, L. P., J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14:673–682, 1999.

    Article  CAS  Google Scholar 

  42. Marr, D., and E. Hildreth. Theory of edge detection. Proc. R. Soc. Lond. B 207:187–217, 1980.

    Article  Google Scholar 

  43. Mattiello, J., J. P. Basser, and D. Le Bihan. The b matrix in diffusion tensor echo-planar imaging. Magn. Reson. Med. 37:292–300, 1997.

    Article  Google Scholar 

  44. Meder, R., S. K. de Visser, J. C. Bowden, T. Bostrom, and J. M. Pope. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthr. Cartil. 14:875–881, 2006.

    Article  Google Scholar 

  45. Moger, C. J., R. Barrett, P. Bleuet, D. A. Bradley, R. E. Ellis, E. M. Green, K. M. Knapp, P. Muthuvelu, and C. P. Winlove. Regional variations of collagen orientation in normal and diseased articular cartilage and subchodral bone determined using small angle X-ray scattering (SAXS). Osteoarthr. Cartil. 15:682–687, 2007.

    Article  Google Scholar 

  46. Mollenhauer, J., M. Aurich, C. Muehleman, G. Khelashvilli, and T. C. Irvine. X-ray diffraction of the molecular substructure of human articular cartilage. Connect. Tissue Res. 44:201–207, 2003.

    Google Scholar 

  47. Mow, V. C., W. Y. Gu, and F. H. Chen. Structure and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics & Mechano-Biology, 3rd edn., edited by V. C. Mow and R. Huiskes. Philadelphia: Lippincott Williams & Wilkins, 2005, pp. 181–258.

    Google Scholar 

  48. Muehleman, C., S. Majumdar, A. S. Issever, F. A. R.-H. Menk, L. Rigon, G. Heitner, B. Reime, J. Metge, A. Wagner, K. E. Kuettner, and J. Mollenhauer. X-ray detection of structural orientation in human articular cartilage. Osteoarthr. Cartil. 12:97–105, 2004.

    Article  Google Scholar 

  49. Neeman, M., J. P. Freyer, and L. O. Sillerud. A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn. Reson. Med. 21:138–143, 1991.

    Article  Google Scholar 

  50. Park, S., R. Krishnan, S. B. Nicoll, and G. A. Ateshian. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36:1785–1796, 2003.

    Article  Google Scholar 

  51. Pierce, D. M., W. Trobin, S. Trattnig, H. Bischof, and G. A. Holzapfel. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. J. Biomed. Eng. 131:091006, 2009.

    Google Scholar 

  52. Potter, H. G., B. R. Black, and L. R. Chong. New techniques in articular cartilage imaging. Clin. Sports Med. 28:77–94, 2009.

    Article  Google Scholar 

  53. Quinn, T. M., and V. Morel. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. Biomech. Model. Mechanobiol. 6:73–82, 2007.

    Article  Google Scholar 

  54. Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. 62:1102–1117, 1980.

    Google Scholar 

  55. Schmidt, M. B., V. C. Mow, L. E. Chun, and D. R. Eyre. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J. Orthop. Res. 8:353–363, 1990.

    Article  CAS  Google Scholar 

  56. Silver, F. H., G. Bradica, and A. Tria. Viscoelastic behavior of osteoarthritic cartilage. Connect. Tissue Res. 42:223–233, 2001.

    Article  Google Scholar 

  57. Simo, J. C. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60:153–173, 1987.

    Article  Google Scholar 

  58. Simo, J. C., R. L. Taylor, and K. S. Pister. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Meth. Appl. Mech. Eng. 51:177–208, 1985.

    Article  Google Scholar 

  59. Taylor, R. L. FEAP—A Finite Element Analysis Program, Version 8.2 User Manual. University of California at Berkeley, Berkeley, California, 2007.

    Google Scholar 

  60. Taylor, Z. A., O. Comas, M. Cheng, J. Passenger, D. J. Hawkes, D. Atkinson, and S. Ourselin. On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Med. Image Anal. 13:234–244, 2009.

    Article  Google Scholar 

  61. Ugryumova, N., D. P. Attenburow, C. P. Winlove, and S. J. Matcher. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography. J. Phys. D: Appl. Phys. 38:2612–2619, 2005.

    Article  Google Scholar 

  62. Ugryumova, N., S. V. Gangnus, and S. J. Matcher. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography. Opt. Lett. 31:2305–2307, 2006.

    Article  Google Scholar 

  63. Wilson, W., J. M. Huyghe, and C. C. van Donkelaar. A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthr. Cartil. 14:554–560, 2006.

    Article  Google Scholar 

  64. Wilson, W., J. M. Huyghe, and C. C. van Donkelaar. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 43–53, 2007.

  65. Wilson, W., C. C. van Donkelaar, B. van Rietbergen, K. Ito, and R. Huiskes. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 37:357–366, 2004.

    Article  Google Scholar 

  66. Wilson, W., C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 38:1195–1204, 2005.

    Article  Google Scholar 

  67. Witkin, A. P. Scale-space filtering. In: Proceedings of the International Joint Conference on Artificial Intelligence, 1983, pp. 1019–1022.

  68. Wong, M., M. Ponticiello, V. Kovanen, and J. S. Jurvelin. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33:1049–1054, 2000.

    Article  CAS  PubMed  Google Scholar 

  69. Woo, S. L. Y., B. R. Simon, S. C. Kuei, and W. H. Akeson. Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102:85–90, 1980.

    Article  Google Scholar 

  70. Xia, Y. Resolution ‘scaling law’ in MRI of articular cartilage. Osteoarthr. Cartil. 15:363–365, 2007.

    Article  Google Scholar 

  71. Xia, Y., J. B. Moody, and H. Alhadlaq. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn. Reson. Med. 48:460–469, 2002.

    Article  Google Scholar 

  72. Zhu, W., V. C. Mow, T. J. Koob, and D. R. Eyre. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop. Res. 11:771–781, 1993.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Austrian Science Fund through project P-18110-B15 ‘Visualization of biomechanics of articular cartilage by MRI’. In addition, we acknowledge Dimitris Kiousis for several lengthy discussions and support regarding the use of a custom smooth contact algorithm, as well as general support regarding FEAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, D.M., Trobin, W., Raya, J.G. et al. DT-MRI Based Computation of Collagen Fiber Deformation in Human Articular Cartilage: A Feasibility Study. Ann Biomed Eng 38, 2447–2463 (2010). https://doi.org/10.1007/s10439-010-9990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9990-9

Keywords

Navigation