Skip to main content
Log in

Current Application of Micro/Nano-Interfaces to Stimulate and Analyze Cellular Responses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microfabrication technologies have a high potential for novel approaches to access living cells at a cellular or even at a molecular level. In the course of reviewing and discussing the current application of microinterface systems including nanointerfaces to stimulate and analyze cellular responses with subcellular resolution, this article focuses on interfaces based on microfluidics, nanoparticles, and scanning electrochemical microscopy (SECM). Micro/nanointerface systems provide a novel, attractive means for cell study because they are capable of regulating and monitoring cellular signals simultaneously and repeatedly, leading us to an enhanced understanding and interpretation of cellular responses. Therefore, it is hoped that the integrated micro/nanointerfaces presented in this review will contribute to future developments of cell biology and facilitate advanced biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abbou, J., C. Demaille, M. Druet, and J. Moiroux. Fabrication of submicrometer-sized gold electrodes of controlled geometry for scanning electrochemical-atomic force microscopy. Anal. Chem. 74:6355–6363, 2002.

    Article  PubMed  CAS  Google Scholar 

  2. Altinoglu, E. I., T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester, and J. H. Adair. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Ashe, H. L., and J. Briscoe. The interpretation of morphogen gradients. Development 133:385–394, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Atencia, J., J. Morrow, and L. E. Locascio. The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9:2707–2714, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Balaban, N. Q., J. Merrin, R. Chait, L. Kowalik, and S. Leibler. Bacterial persistence as a phenotypic switch. Science 305:1622–1625, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Bard, A. J., F. R. F. Fan, J. Kwak, and O. Lev. Scanning electrochemical microscopy—introduction and principles. Anal. Chem. 61:132–138, 1989.

    Article  CAS  Google Scholar 

  7. Bard, A. J., X. Li, and W. Zhan. Chemically imaging living cells by scanning electrochemical microscopy. Biosens. Bioelectron. 22:461–472, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Bennett, M. R., and J. Hasty. Modelling microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10:628–638, 2009.

    Article  PubMed  CAS  Google Scholar 

  9. Boedicker, J. Q., M. E. Vincent, and R. F. Ismagilov. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Ed. 48:5908–5911, 2009.

    Article  CAS  Google Scholar 

  10. Brehm-Stecher, B. F., and E. A. Johnson. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68:538–559, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. Carano, M., K. B. Holt, and A. J. Bard. Scanning electrochemical microscopy. 49. Gas-phase scanning electrochemical microscopy measurements with a clark oxygen ultramicroelectrode. Anal. Chem. 75:5071–5079, 2003.

    Article  CAS  Google Scholar 

  12. Chen, Z., S. B. Xie, L. Shen, Y. Du, S. L. He, Q. Li, Z. W. Liang, X. Meng, B. Li, X. D. Xu, H. W. Ma, Y. Y. Huang, and Y. H. Shao. Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy. Analyst 133:1221–1228, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Chithrani, B. D., A. A. Ghazani, and W. C. W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–668, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Chueh, B. H., D. G. Huh, C. R. Kyrtsos, T. Houssin, N. Futai, and S. Takayama. Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 79:3504–3508, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Chung, B. G., L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Ciobanu, M., D. E. Taylor, J. P. Wilburn, and D. E. Cliffel. Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal. Chem. 80:2717–2727, 2008.

    Article  PubMed  CAS  Google Scholar 

  17. Davis, M. E., Z. Chen, and D. M. Shin. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7:771–782, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Davoodi, A., J. Pan, C. Leygraf, and S. Norgren. Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys. Electrochim. Acta 52:7697–7705, 2007.

    Article  CAS  Google Scholar 

  19. Dertinger, S. K. W., D. T. Chiu, N. L. Jeon, and G. M. Whitesides. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73:1240–1246, 2001.

    Article  CAS  Google Scholar 

  20. Diakowski, P. M., and Z. F. Ding. Interrogation of living cells using alternating current scanning electrochemical microscopy (AC-SECM). Phys. Chem. Chem. Phys. 9:5966–5974, 2007.

    Article  PubMed  CAS  Google Scholar 

  21. Dobson, P. S., J. M. R. Weaver, D. P. Burt, M. N. Holder, N. R. Wilson, P. R. Unwin, and J. V. Macpherson. Electron beam lithographically-defined scanning electrochemical-atomic force microscopy probes: fabrication method and application to high resolution imaging on heterogeneously active surfaces. Phys. Chem. Chem. Phys. 8:3909–3914, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. El-Ali, J., P. K. Sorger, and K. F. Jensen. Cells on chips. Nature 442:403–411, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5:161–171, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Frasch, M., T. Hoey, C. Rushlow, H. Doyle, and M. Levine. Characterization and localization of the even-skipped protein of Drosophila. EMBO J. 6:749–759, 1987.

    PubMed  CAS  Google Scholar 

  25. Gao, N., X. L. Wang, L. Li, X. L. Zhang, and W. R. Jin. Scanning electrochemical microscopy coupled with intracellular standard addition method for quantification of enzyme activity in single intact cells. Analyst 132:1139–1146, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Ghim, C.-M., T. Kim, R. J. Mitchell, and S. K. Lee. Synthetic biology for biofuels: building designer microbes from the scratch. Biotechnol. Bioprocess Eng. 15, 2010. doi:10.1007/s12257-009-3065-5.

  27. Gullo, M. R., P. L. T. M. Frederix, T. Akiyama, A. Engel, N. F. deRooij, and U. Staufer. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy. Anal. Chem. 78:5436–5442, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Gurdon, J. B., and P. Y. Bourillot. Morphogen gradient interpretation. Nature 413:797–803, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD Promoter. J. Bacteriol. 177:4121–4230, 1995.

    PubMed  CAS  Google Scholar 

  30. Hatch, A., A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager. A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol. 19:461–465, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Hauck, T. S., A. A. Ghazani, and W. C. W. Chan. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159, 2008.

    Article  PubMed  CAS  Google Scholar 

  32. Helmke, B. P., and A. R. Minerick. Designing a nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc. Natl Acad. Sci. USA 103:6419–6424, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Honda, A., H. Komatsu, D. Kato, A. Ueda, K. Maruyama, Y. Iwasaki, T. Ito, O. Niwa, and K. Suzuki. Newly developed chemical probes and nano-devices for cellular analysis. Anal. Sci. 24:55–66, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. Irimia, D., and M. Toner. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. 1:506–512, 2009.

    Article  CAS  Google Scholar 

  35. Ismagilov, R. F., and M. M. Maharbiz. Can we build synthetic, multicelullar systems by controlling developmental signaling in space and time? Curr. Opin. Chem. Biol. 11:604–611, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Jeon, N. L., H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:826–830, 2002.

    CAS  Google Scholar 

  37. Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316, 2000.

    Article  CAS  Google Scholar 

  38. Jiang, W., B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3:145–150, 2008.

    Article  PubMed  CAS  Google Scholar 

  39. Katemann, B. B., A. Schulte, and W. Schuhmann. Constant-distance mode scanning electrochemical microscopy (SECM). Part I. Adaptation of a non-optical shear-force-based positioning mode for SECM tips. Chem. Eur. J. 9:2025–2033, 2003.

    Article  CAS  Google Scholar 

  40. Keenan, T. M., and A. Folch. Biomolecular gradients in cell culture systems. Lab Chip 8:34–57, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Kim, T., M. Pinelis, and M. M. Maharbiz. Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11:65–73, 2009.

    Article  PubMed  CAS  Google Scholar 

  42. King, K. R., S. Wang, A. Jayaraman, M. L. Yarmush, and M. Toner. Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments. Lab Chip 8:107–116, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. Kranz, C., G. Friedbacher, and B. Mizaikoff. Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. Anal. Chem. 73:2491–3500, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Kueng, A., C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff. AFM-tip-integrated amperometric microbiosensors: high-resolution imaging of membrane transport. Angew. Chem. Int. Ed. 44:3419–3422, 2005.

    Article  CAS  Google Scholar 

  45. Kueng, A., C. Kranz, and B. Mizaikoff. Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy. Biosens. Bioelectron. 21:346–353, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–256, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108:2064–2110, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, S. K., H. H. Chou, B. F. Pfleger, J. D. Newman, Y. Yoshikuni, and J. D. Keasling. Directed evolution of Arac for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73:5711–5715, 2007.

    Article  PubMed  CAS  Google Scholar 

  49. Lee, Y., Z. F. Ding, and A. J. Bard. Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal. Chem. 74:3634–3643, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Lee, Y.-E. K., R. Smith, and R. Kopelman. Nanoparticle pebble sensors in live cells and in vivo. Annu. Rev. Anal. Chem. 2:57–76, 2009.

    Article  PubMed  CAS  Google Scholar 

  51. Li, K., J. Pan, S.-S. Feng, A. W. Wu, K.-Y. Pu, Y. Liu, and B. Liu. Generic strategy of preparing fluorescent conjugated-polymer-loaded Poly(dl-lactide-co-Glycolide) nanoparticles for targeted cell imaging. Adv. Funct. Mater. 19:3535–3542, 2009.

    Article  CAS  Google Scholar 

  52. Lucchetta, E. M., J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Lucchetta, E. M., M. S. Munson, and R. F. Ismagilov. Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip 6:185–190, 2006.

    Article  PubMed  CAS  Google Scholar 

  54. Macpherson, J. V., and P. R. Unwin. Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy. Anal. Chem. 73:550–557, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Macpherson, J. V., P. R. Unwin, A. C. Hillier, and A. J. Bard. In-situ imaging of ionic crystal dissolution using an integrated electrochemical/AFM probe. J. Am. Chem. Soc. 118:6445–6452, 1996.

    Article  CAS  Google Scholar 

  56. Martin-Orozco, N., N. Touret, M. L. Zaharik, E. Park, R. Kopelman, S. Miller, B. B. Finlay, P. Gros, and S. Grinstein. Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol. Biol. Cell 17:498–510, 2006.

    Article  PubMed  CAS  Google Scholar 

  57. Meyvantsson, I., and D. J. Beebe. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1:423–449, 2008.

    Article  CAS  Google Scholar 

  58. Paguirigan, A. L., and D. J. Beebe. From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integr. Biol. 1:182–195, 2009.

    Article  CAS  Google Scholar 

  59. Park, J., T. Bansal, M. Pinelis, and M. M. Maharbiz. A microsystem for sensing and patterning oxidative microgradients during cell culture. Lab Chip 6:611–622, 2006.

    Article  PubMed  CAS  Google Scholar 

  60. Park, E. J., M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman. Ratiometric optical pebble nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75:3784–3791, 2003.

    Article  PubMed  CAS  Google Scholar 

  61. Parthasarathy, M., S. Singh, S. Hazra, and V. K. Pillai. Imaging the stomatal physiology of somatic embryo-derived peanut leaves by scanning electrochemical microscopy. Anal. Bioanal. Chem. 391:2227–2233, 2008.

    Article  PubMed  CAS  Google Scholar 

  62. Rao, J. Shedding light on tumors using nanoparticles. ACS Nano 2:1984–1986, 2008.

    Article  PubMed  CAS  Google Scholar 

  63. Saadi, W., S. J. Wang, F. Lin, and N. L. Jeon. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8:109–118, 2006.

    Article  PubMed  Google Scholar 

  64. Schrock, D. S., and J. E. Baur. Chemical imaging with voltammetry-scanning microscopy. Anal. Chem. 79:7053–7061, 2007.

    Article  PubMed  CAS  Google Scholar 

  65. Schrock, D. S., D. O. Wipf, and J. E. Baur. Feedback effects in combined fast-scan cyclic voltammetry-scanning electrochemical microscopy. Anal. Chem. 79:4931–4941, 2007.

    Article  PubMed  CAS  Google Scholar 

  66. Schulte, A., and W. Schuhmann. Single-cell microelectrochemistry. Angew. Chem. Int. Ed. 46:8760–8777, 2007.

    Article  CAS  Google Scholar 

  67. Shiku, H., M. Takeda, T. Murata, U. Akiba, F. Hamada, and T. Matsue. Development of electrochemical reporter assay using Hela cells transfected with vector plasmids encoding various responsive elements. Anal. Chim. Acta 640:87–92, 2009.

    Article  PubMed  CAS  Google Scholar 

  68. Shin, H., P. J. Hesketh, B. Mizaikofff, and C. Kranz. Development of wafer-level batch fabrication for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Sens. Actuators B Chem. 134:488–495, 2008.

    Article  CAS  Google Scholar 

  69. Siegele, D. A., and J. C. Hu. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl Acad. Sci. USA 94:8168–8172, 1997.

    Article  PubMed  CAS  Google Scholar 

  70. Sun, P., F. O. Laforge, and M. V. Mirkin. Scanning electrochemical microscopy in the 21st century. Phys. Chem. Chem. Phys. 9:802–823, 2007.

    Article  PubMed  CAS  Google Scholar 

  71. Takahashi, Y., T. Miyamoto, H. Shiku, R. Asano, T. Yasukawa, I. Kumagai, and T. Matsue. Electrochemical detection of epidermal growth factor receptors on a single living cell surface by scanning electrochemical microscopy. Anal. Chem. 81:2785–2790, 2009.

    Article  PubMed  CAS  Google Scholar 

  72. Takayama, S., E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides. Laminar flows-subcellular positioning of small molecules. Nature 411:1016, 2001.

    Article  PubMed  CAS  Google Scholar 

  73. Tholouli, E., E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers. Quantum dots light up pathology. J. Pathol. 216:275–285, 2008.

    Article  PubMed  CAS  Google Scholar 

  74. Torisawa, Y. S., B. H. Chueh, D. Huh, P. Ramamurthy, T. M. Roth, K. F. Barald, and S. Takayama. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 7:770–776, 2007.

    Article  PubMed  CAS  Google Scholar 

  75. Torisawa, Y. S., B. Mosadegh, G. D. Luker, M. Morell, K. S. O’Shea, and S. Takayama. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1:649–654, 2009.

    Article  CAS  Google Scholar 

  76. Torisawa, Y. S., N. Ohara, K. Nagamine, S. Kasai, T. Yasukawa, H. Shiku, and T. Matsue. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal. Chem. 78:7625–7631, 2006.

    Article  PubMed  CAS  Google Scholar 

  77. Tyner, K. M., R. Kopelman, and M. A. Philbert. “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93:1163–1174, 2007.

    Article  PubMed  CAS  Google Scholar 

  78. Yasukawa, T., T. Kaya, and T. Matsue. Characterization and imaging of single cells with scanning electrochemical microscopy. Electroanalysis 12:653–659, 2000.

    Article  CAS  Google Scholar 

  79. Zhan, D. P., X. Li, W. Zhan, F. R. F. Fan, and A. J. Bard. Scanning electrochemical microscopy. 58. Application of a micropipet-supported ITIES tip to detect Ag+ and study its effect on fibroblast cells. Anal. Chem. 79:5225–5231, 2007.

    Article  PubMed  CAS  Google Scholar 

  80. Zhu, L. L., N. Gao, X. L. Zhang, and W. R. Jin. Accurately measuring respiratory activity of single living cells by scanning electrochemical microscopy. Talanta 77:804–808, 2008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2009-0076534), and WCU (World Class University) program through the NRF of Korea funded by the MEST (R32-2008-000-20054-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesung Kim.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, YK., Shin, H., Lee, S.K. et al. Current Application of Micro/Nano-Interfaces to Stimulate and Analyze Cellular Responses. Ann Biomed Eng 38, 2056–2067 (2010). https://doi.org/10.1007/s10439-010-9984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9984-7

Keywords

Navigation