Skip to main content
Log in

Neutrophil Adhesion on Endothelial Cells in a Novel Asymmetric Stenosis Model: Effect of Wall Shear Stress Gradients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Leukocytes play a pivotal role in the progression of atherosclerosis. A novel three-dimensional in vitro asymmetric stenosis model was used to better investigate the role of local hemodynamics in the adhesion of leukocytes to an established plaque. The adhesion of a human promyelocytic cell line (NB4) on a human abdominal aortic endothelial cell (EC) monolayer was quantified. NB4 cells were circulated over TNF-α stimulated and nonstimulated ECs for 1 or 6 h at 1.25 or 6.25 dynes/cm2 and compared to static conditions. Cytokine stimulation increased significantly EC expression of intercellular adhesion molecule and vascular cell adhesion molecule. Under static conditions, neutrophils adhered overall more than under flow, with decreased adhesion with increasing shear. Adhesion was significantly higher in the recirculation region distal to the stenosis than in the inlet. Preshearing the ECs decreased the expression of cell adhesion molecules in inflamed endothelium and significantly decreased adhesion. However, the ratio of adhesion between the recirculation zone and the inlet increased, hence exhibiting an increased regional difference. This work suggests an important role for neutrophil–EC interactions in the atherosclerotic process, especially in wall shear stress gradient regions. This is important clinically, potentially helping to explain plaque stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Ando, J., H. Nomura, and A. Kamiya. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33(1):62–70, 1987.

    Article  CAS  PubMed  Google Scholar 

  2. Brunette, J., R. Mongrain, G. Cloutier, M. Bertrand, O. F. Bertrand, and J. C. Tardif. A novel realistic three-layer phantom for intravascular ultrasound imaging. Int. J. Cardiovasc. Imaging 17(5):371–381, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Brunette, J., R. Mongrain, J. Laurier, R. Galaz, and J. C. Tardif. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method. Med. Eng. Phys. 30(9):1193–1200, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Burke, A. P., F. D. Kolodgie, A. Farb, D. Weber, and R. Virmani. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105(3):297–303, 2002.

    Article  PubMed  Google Scholar 

  5. Burns, M. P., and N. DePaola. Flow-conditioned HUVECs support clustered leukocyte adhesion by coexpressing ICAM-1 and E-selectin. Am. J. Physiol. Heart Circ. Physiol. 288(1):H194–H204, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, C. N., S. F. Chang, P. L. Lee, K. Chang, L. J. Chen, S. Usami, S. Chien, and J. J. Chiu. Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow. Blood 107(5):1933–1942, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, C. C., and A. M. Manning. Transcriptional regulation of endothelial cell adhesion molecules: a dominant role for NF-kappa B. Agents Actions Suppl. 47:135–141, 1995.

    CAS  PubMed  Google Scholar 

  8. Chung, T. W., Y. C. Tyan, J. H. Hsieh, S. S. Wang, and S. H. Chu. Shear stress-induced aggregation of oxidized platelets. Thromb. Res. 105(4):325–329, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Cicha, I., K. Beronov, E. Lopez Ramirez, K. Osterode, M. Goppelt, D. Raaz, A. Yilmaz, W. G. Daniel, and C. D. Garlichs. Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-α ± and monocytic cell recruitment in a simplified model of arterial bifurcations. Atherosclerosis 207(1):93–102, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Cicha, I., M. Goppelt-Struebe, A. Yilmaz, W. G. Daniel, and C. D. Garlichs. Endothelial dysfunction and monocyte recruitment in cells exposed to non-uniform shear stress. Clin. Hemorheol. Microcirc. 39(1-4):113–119, 2008.

    CAS  PubMed  Google Scholar 

  11. Couch, G. G., K. W. Johnston, and M. Ojha. Full-field flow visualization and velocity measurement with a photochromic grid method. Meas. Sci. Technol. 7:1238–1246, 1996.

    Article  CAS  Google Scholar 

  12. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl Acad. Sci. USA 101(41):14871–14876, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. DeBakey, M. E., G. M. Lawrie, and D. H. Glaeser. Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201(2):115–131, 1985.

    Article  CAS  PubMed  Google Scholar 

  14. Dirksen, M. T., A. C. van der Wal, F. M. van den Berg, C. M. van der Loos, and A. E. Becker. Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98(19):2000–2003, 1998.

    CAS  PubMed  Google Scholar 

  15. Falanga, A., M. Marchetti, S. Giovanelli, and T. Barbui. All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4). Blood 87(2):613–617, 1996.

    CAS  PubMed  Google Scholar 

  16. Falk, E., P. K. Shah, and V. Fuster. Coronary plaque disruption. Circulation 92(3):657–671, 1995.

    CAS  PubMed  Google Scholar 

  17. Farcas, M., L. Rouleau, R. Fraser, and R. Leask. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomed. Eng. 8(1):30, 2009.

    Google Scholar 

  18. Feng, S., X. Lu, J. C. Resendiz, and M. H. Kroll. Pathological shear stress directly regulates platelet alphaIIbbeta3 signaling. Am. J. Physiol. Cell Physiol. 291(6):C1346–C1354, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through l-selectin requires a threshold hydrodynamic shear. Nature 379(6562):266–269, 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. USA 98(8):4478–4485, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Gimbrone, Jr., M. A., T. Nagel, and J. N. Topper. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J. Clin. Invest. 100(11 Suppl):S61–S65, 1997.

    PubMed  Google Scholar 

  22. Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci. 902:230–239, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Gopalan, P. K., A. R. Burns, S. I. Simon, S. Sparks, L. V. McIntire, and C. W. Smith. Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J. Leukoc. Biol. 68(1):47–57, 2000.

    CAS  PubMed  Google Scholar 

  24. Hinds, M. T., Y. J. Park, S. A. Jones, D. P. Giddens, and B. R. Alevriadou. Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J. Biomech. 34(1):95–103, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Khanna-Gupta, A., K. Kolibaba, T. A. Zibello, and N. Berliner. NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression. Blood 84(1):294–302, 1994.

    CAS  PubMed  Google Scholar 

  26. Koller, A., D. Sun, and G. Kaley. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ. Res. 72(6):1276–1284, 1993.

    CAS  PubMed  Google Scholar 

  27. Kovanen, P. T. Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques. Biochem. Soc. Trans. 035(5):857–861, 2007.

    Article  CAS  Google Scholar 

  28. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and arherosclerosis in human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  29. Leask, R. L., J. K. Wayne, and M. Ojha. Hemodynamic effects of clot entrapment in the TrapEase inferior vena cava filter. J. Vasc. Interv. Radiol. 15(5):485–490, 2004.

    PubMed  Google Scholar 

  30. Libby, P. Inflammation in atherosclerosis. Nature 420(6917):868–874, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation 105(9):1135–1143, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. Libby, P., and P. Theroux. Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488, 2005.

    Article  PubMed  Google Scholar 

  33. Lindstedt, K. A., M. J. Leskinen, and P. T. Kovanen. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler. Thromb. Vasc. Biol. 24(8):1350–1358, 2004.

    Article  CAS  PubMed  Google Scholar 

  34. Marchetti, A. F. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Brit. J. Haematol. 93(2):360–366, 1996.

    Article  CAS  Google Scholar 

  35. Marchetti, M., A. Falanga, S. Giovanelli, E. Oldani, and T. Barbui. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4. Br. J. Haematol. 93(2):360–366, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Montoya, M. C., F. W. Luscinskas, M. A. del Pozo, J. Aragones, and M. O. de Landazuri. Reduced intracellular oxidative metabolism promotes firm adhesion of human polymorphonuclear leukocytes to vascular endothelium under flow conditions. Eur. J. Immunol. 27(8):1942–1951, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Nerem, R. M., R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, and W. R. Taylor. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316(3):169–175, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Ojha, M., R. S. Cobbold, and K. W. Johnston. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J. Vasc. Surg. 19(6):1067–1073, 1994.

    CAS  PubMed  Google Scholar 

  39. Ojha, M., R. S. C. Cobbold, K. W. Johnston, and R. L. Hummel. Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203(1):173–197, 1989.

    Article  CAS  Google Scholar 

  40. Ojha, M., R. S. Cobbold, K. W. Johnston, and R. L. Hummel. Detailed visualization of pulsatile flow fields produced by modelled arterial stenoses. J. Biomed. Eng. 12(6):463–469, 1990.

    Article  CAS  PubMed  Google Scholar 

  41. Price, D. T., and J. Loscalzo. Cellular adhesion molecules and atherogenesis. Am. J. Med. 107(1):85–97, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. Rainger, G. E., A. C. Fisher, and G. B. Nash. Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am. J. Physiol. 272(1 Pt 2):H114–H122, 1997.

    CAS  PubMed  Google Scholar 

  43. Richardson, P. D., M. J. Davies, and G. V. R. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 334(8669):941–944, 1989.

    Article  Google Scholar 

  44. Rouleau, L., M. Farcas, I. Copland, J. C. Tardif, R. Mongrain, and R. L. Leask. Morphological and functional flow-induced response of endothelial cells and adhesive properties of leukocytes in 3D stenotic models. IFMBE Proc. 22(15):2015–2018, 2009.

    Article  Google Scholar 

  45. Rouleau, L., M. Farcas, J. C. Tardif, E. Thorin, R. Mongrain, and R. L. Leask. Endothelial cell morphology and response to shear stress in an asymmetric stenosis model. J. Biomech. 39(S1):S312, 2006.

    Article  Google Scholar 

  46. Rouleau, L., J. Rossi, and R. L. Leask. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude and spatial gradients in wall shear stress. J. Biomech. Eng., in press. doi:10.1115/1.4001217

  47. Sheikh, S., M. Rahman, Z. Gale, N. T. Luu, P. C. Stone, N. M. Matharu, G. E. Rainger, and G. B. Nash. Differing mechanisms of leukocyte recruitment and sensitivity to conditioning by shear stress for endothelial cells treated with tumour necrosis factor-alpha or interleukin-1beta. Br. J. Pharmacol. 145(8):1052–1061, 2005.

    Article  CAS  PubMed  Google Scholar 

  48. Simon, S. I., and H. L. Goldsmith. Leukocyte adhesion dynamics in shear flow. Ann. Biomed. Eng. 30(3):315–332, 2002.

    Article  PubMed  Google Scholar 

  49. Stary, H. C., A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov, W. Insull, Jr., M. E. Rosenfeld, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374, 1995.

    CAS  PubMed  Google Scholar 

  50. Theilmeier, G., T. Lenaerts, C. Remacle, D. Collen, J. Vermylen, and M. F. Hoylaerts. Circulating activated platelets assist THP-1 monocytoid/endothelial cell interaction under shear stress. Blood 94(8):2725–2734, 1999.

    CAS  PubMed  Google Scholar 

  51. Tsou, J. K., R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana, A. G. Passerini, and S. I. Simon. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15(4):311–323, 2008.

    Article  CAS  PubMed  Google Scholar 

  52. Viles-Gonzalez, J. F., V. Fuster, and J. J. Badimon. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur. Heart J. 25(14):1197–1207, 2004.

    Article  CAS  PubMed  Google Scholar 

  53. Virmani, R., and P. B. U. Allen. Pathology of the thin-cap fibroatheroma. J. Intervent. Cardiol. 16(3):267–272, 2003.

    Article  PubMed  Google Scholar 

  54. Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15(1):2–10, 1995.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank L. Danielczak and K. Markey for their technical assistance in the experiments.

Grants

This work was supported by grants from the Canadian Foundation for Innovation (CFI), the National Sciences and Engineering Research Council (NSERC), the Canadian Institutes of Health Research (CIHR), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Eugenie Ulmer Lamothe Fund (EUL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Leask.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 9008 kb)

Supplementary material 2 (AVI 9008 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouleau, L., Copland, I.B., Tardif, JC. et al. Neutrophil Adhesion on Endothelial Cells in a Novel Asymmetric Stenosis Model: Effect of Wall Shear Stress Gradients. Ann Biomed Eng 38, 2791–2804 (2010). https://doi.org/10.1007/s10439-010-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0032-4

Keywords

Navigation