Skip to main content
Log in

A Bioreactor with Compliance Monitoring for Heart Valve Grafts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The drawbacks of state-of-the-art heart valve prostheses lead researchers to explore the prospect of using tissue-engineered constructs as possible valve substitutes. It is widely accepted that the mechanical properties of the construct are improved with mechanical stimulation during in vitro growth. We designed a new dynamic bioreactor with the perspective of using decellularized valve homografts as scaffolds in order to produce tissue-engineered valve substitutes. The design guidelines were (a) compatibility with the procedures for the treatment of homografts; (b) delivery of finely controlled pulsatile pressure loads, which induce strain stimuli that may drive cells toward repopulation of and integration with the natural scaffold; and (c) monitoring the construct’s biomechanical status through a comprehensive index, i.e., its compliance. The handling needs during the set-up of the homograft and the use of the bioreactor were minimized. The bioreactor and its automated control system underwent tests with a compliant phantom valve. The estimated compliances are in good agreement with the measured ones. Tests were also carried out with porcine aortic samples in order to assess the hydrodynamic and biomechanical reliability. In the future, monitoring the construct’s compliance might represent a key factor in controlling the recellularization of the valve homografts, which provides awareness of the construct’s biomechanical status by real-time, non-destructive, and non-invasive means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

References

  1. Barron, V., E. Lyons, C. Stenson-Cox, P. E. McHugh, and A. Pandit. Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng. 31:1017–1030, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Brody, S., and A. Pandit. Approaches to heart valve tissue engineering scaffold design. J. Biomed. Mater. Res. B Appl. Biomater. 83(1):16–43, 2007.

    PubMed  Google Scholar 

  3. Dohmen, P. M., F. da Costa, S. Yoshi, S. V. Lopes, F. P. da Souza, R. Vilani, A. F. Wouk, M. da Costa, and W. Konertz. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in vitro seeding? J. Heart Valve Dis. 15:823–829, 2006.

    PubMed  Google Scholar 

  4. Engelmayr, Jr., G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, Jr., and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2532, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Engelmayr, Jr., G. C., E. Rabkin, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr., and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26:175–187, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Engelmayr, Jr., G. C., V. L. Sales, J. E. Mayer, Jr., and M. S. Sacks. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: implications for engineered heart valve tissues. Biomaterials 27:6083–6095, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Hildebrand, D. K., Z. J. Wu, J. E. Mayer, Jr., and M. S. Sacks. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32:1039–1049, 2004.

    Article  PubMed  Google Scholar 

  9. Hoerstrup, S. P., A. Kadner, S. Melnitchouk, A. Trojan, K. Eid, J. Tracy, R. Sodian, J. F. Visjager, S. A. Kolb, J. Grunenfelder, G. Zund, and M. I. Turina. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 24:I143–I150, 2002.

    Google Scholar 

  10. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 7:III44–III49, 2000.

    Google Scholar 

  11. Hopkins, R. A. Tissue engineering of heart valves: decellularized valve scaffolds. Circulation 111:2712–2714, 2005.

    Article  PubMed  Google Scholar 

  12. Johnson, M. A., and M. H. Moradi. PID Control New Identification and Design Methods, 2nd edn. London: Springer-Verlag, pp. 103–107, 2005

  13. Karim, N., K. Golz, and A. Bader. The cardiovascular tissue-reactor: a novel device for the engineering of heart valves. Artif. Organs. 30:809–814, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Lichtenberg, A., I. Tudorache, S. Cebotari, S. Ringes-Lichtenberg, K. Sturz, G. Hoeffler, C. Hurscheler, G. Brandes, A. Hilfiker, and A. Haverich. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Mendelson, K., and F. J. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34:1799–1819, 2006.

    Article  PubMed  Google Scholar 

  16. Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1):H224–H231, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Miller, D. V., W. D. Edwards, and K. J. Zehr. Endothelial and smooth muscle cell populations in a decellularized cryopreserved aortic homograft (SynerGraft) 2 years after implantation. J. Thorac. Cardiovasc. Surg. 132(1):175–176, 2006.

    Article  PubMed  Google Scholar 

  18. Mol, A., C. V. Bouten, G. Zund, C. I. Gunter, J. F. Visjager, M. I. Turina, F. P. Baaijens, and S. P. Hoerstrup. The relevance of large strains in functional tissue engineering of heart valves. Thorac. Cardiovasc. Surg. 51:78–83, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Mol, A., N. J. Driessen, M. C. Rutten, S. P. Hoerstrup, C. V. Bouten, and F. P. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.

    Article  PubMed  Google Scholar 

  20. Mol, A., M. C. Rutten, N. J. Driessen, C. V. Bouten, G. Zünd, F. P. Baaijens, and S. P. Hoerstrup. Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation 4:I152–I158, 2006.

    Google Scholar 

  21. Morsi, Y. S., W. W. Yang, A. Owida, and C. S. Wong. Development of a novel pulsatile bioreactor for tissue culture. J. Artif. Organs. 10:109–114, 2007.

    Article  PubMed  Google Scholar 

  22. Ruel, J., and G. Lachance. A new bioreactor for the development of tissue-engineered heart valves. Ann. Biomed. Eng. 37(4):674–681, 2009.

    Article  PubMed  Google Scholar 

  23. Schenke-Layland, K., F. Opitz, M. Gross, C. Döring, K. J. Halbhuber, F. Schirrmeister, T. Wahlers, and U. A. Stock. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals—an in vitro study. Cardiovasc. Res. 60:497–509, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt, D., A. Mol, C. Breymann, J. Achermann, B. Odermatt, M. Gossi, S. Neuenschwander, R. Pretre, M. Genoni, G. Zund, and S. P. Hoerstrup. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 4:I125–I131, 2006.

    Google Scholar 

  25. Vesely, I. Heart valve tissue engineering. Circ. Res. 14:743–755, 2005.

    Article  Google Scholar 

  26. Vilendrer, K., et al. Bioreactor with plurality of chambers for conditioning intravascular tissue engineered medical products. US patent application 2003/0199083 A1.

  27. Webb, A. R., B. D. Macrie, A. S. Ray, J. E. Russo, A. M. Siegel, M. R. Glucksberg, and A. A. Guillermo. In vitro characterization of a compliant biodegradable scaffold with a novel bioreactor system. Ann. Biomed. Eng. 35(8):1357–1367, 2009.

    Article  Google Scholar 

  28. Zilla, P., J. Brink, P. Human, and D. Bezuidenhout. Prosthetic heart valves: catering for the few. Biomaterials 29:385–406, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Nicola Volpi from the University of Modena and Reggio Emilia for fruitful discussions. This work was partly supported by the Italian Ministry of Health, RC2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Vismara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vismara, R., Soncini, M., Talò, G. et al. A Bioreactor with Compliance Monitoring for Heart Valve Grafts. Ann Biomed Eng 38, 100–108 (2010). https://doi.org/10.1007/s10439-009-9803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9803-1

Keywords

Navigation