Skip to main content
Log in

The Relative Role of Refractoriness and Source–Sink Relationship in Reentry Generation during Simulated Acute Ischemia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During acute myocardial ischemia, reentrant episodes may lead to ventricular fibrillation (VF), giving rise to potentially mortal arrhythmias. VF has been traditionally related to dispersion of refractoriness and more recently to the source–sink relationship. Our goal is to theoretically investigate the relative role of dispersion of refractoriness and source–sink mismatch in vulnerability to reentry in the specific situation of regional myocardial acute ischemia. The electrical activity of a regionally ischemic tissue was simulated using a modified version of the Luo-Rudy dynamic model. Ischemic conditions were varied to simulate the time-course of acute ischemia. Our results showed that dispersion of refractoriness increased with the severity of ischemia. However, no correlation between dispersion of refractoriness and the width of the vulnerable window was found. Additionally, in approximately 50% of the reentries, unidirectional block (UDB) took place in cells completely recovered from refractoriness. We examined patterns of activation after premature stimulation and they were intimately related to the source–sink relationship, quantified by the safety factor (SF). Moreover, the isoline where the SF dropped below unity matched the area where propagation failed. It was concluded that the mismatch of the source–sink relationship, rather than solely refractoriness, was the ultimate cause of the UDB leading to reentry. The SF represents a very powerful tool to study the mechanisms responsible for reentry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Allessie, M.A., F.I. Bonke, F.J. Schopman. 1976. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ. Res. 39:168-177.

    PubMed  CAS  Google Scholar 

  2. Allessie, M.A., F.I. Bonke, and F.J. Schopman. 1977. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41:9-18.

    PubMed  CAS  Google Scholar 

  3. Azene, E.M., N.A. Trayanova, E. Warman. 2001. Wave front-obstacle interactions in cardiac tissue: a computational study. Ann. Biomed. Eng. 29:35-46. doi:10.1114/1.1332083

    Article  PubMed  CAS  Google Scholar 

  4. Cascio, W.E. 2001. Myocardial ischemia: what factors determine arrhythmogenesis? J. Cardiovasc. Electrophysiol. 12:726-729. doi:10.1046/j.1540-8167.2001.00726.x

    Article  PubMed  CAS  Google Scholar 

  5. Chen, P.S., P.D. Wolf, E.G. Dixon, N.D. Danieley, D.W. Frazier, W.M. Smith, and R.E. Ideker. 1988. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ. Res. 62:1191-1209.

    PubMed  CAS  Google Scholar 

  6. Clayton, R.H., A.V. Holden. 2005. Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study. Biomed. Eng. Online. 4:11. doi:10.1186/1475-925X-4-11

    Article  PubMed  Google Scholar 

  7. Coronel, R. 1994. Heterogeneity in extracellular potassium concentration during early myocardial ischaemia and reperfusion: implications for arrhythmogenesis. Cardiovasc. Res. 28:770-777. doi:10.1093/cvr/28.6.770

    Article  PubMed  CAS  Google Scholar 

  8. Coronel, R., J.W. Fiolet, F.J. Wilms-Schopman, A.F. Schaapherder, T.A. Johnson, L.S. Gettes, M.J. Janse. 1988. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77:1125-1138.

    PubMed  CAS  Google Scholar 

  9. Coronel, R., F.J. Wilms-Schopman, L.R. Dekker, M.J. Janse. 1995. Heterogeneities in [K +]o and TQ potential and the inducibility of ventricular fibrillation during acute regional ischemia in the isolated perfused porcine heart. Circulation 92:120-129.

    PubMed  CAS  Google Scholar 

  10. Danse, P.W., C.J. Garratt, F. Mast, M.A. Allessie. 2000. Preferential depression of conduction around a pivot point in rabbit ventricular myocardium by potassium and flecainide. J. Cardiovasc. Electrophysiol. 11:262-273. doi:10.1111/j.1540-8167.2000.tb01795.x

    Article  PubMed  CAS  Google Scholar 

  11. Delgado, C., B. Steinhaus, M. Delmar, D.R. Chialvo, J. Jalife. 1990. Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle. Circ. Res. 67:97-110.

    PubMed  CAS  Google Scholar 

  12. Downar, E., M.J. Janse, D. Durrer. 1977. The effect of “ischemic” blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation 55:455-462.

    PubMed  CAS  Google Scholar 

  13. Faber, G.M., and Y. Rudy. 2000. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78:2392-2404. doi:10.1016/S0006-3495(00)76783-X

    Article  PubMed  CAS  Google Scholar 

  14. Fei, H., D. Yazmajian, M.S. Hanna, and L.H. Frame. 1997. Termination of reentry by lidocaine in the tricuspid ring in vitro. Role of cycle-length oscillation, fast use-dependent kinetics, and fixed block. Circ. Res. 80:242-252.

    PubMed  CAS  Google Scholar 

  15. Ferrero, J.M., Jr., J. Saiz, J.M. Ferrero, and N.V. Thakor. 1996. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K + current. Circ. Res. 79:208-221.

    PubMed  CAS  Google Scholar 

  16. Ferrero, J.M., Jr., J. Saiz, J.M. Ferrero, Sr., and N.V. Thakor. 1999. Postrepolarization refractoriness in ventricular cardiac cells: a simulation study. Computers in Cardiology 26:487-490.

    Google Scholar 

  17. Ferrero, J.M., B. Trenor, B. Rodriguez, and J. Saiz. 2003. Electrical activity and reentry during acute myocardial ischemia: insights from simulations. Intl. J. Bifurcat. Chaos 13:67-78. doi:10.1142/S0218127403008806

    Google Scholar 

  18. Franz, M.R. 2003. The electrical restitution curve revisited: steep or flat slope-which is better? J. Cardiovasc. Electrophysiol. 14:S140-S147. doi:10.1046/j.1540.8167.90303.x

    Article  PubMed  Google Scholar 

  19. Gough, W.B., R. Mehra, M. Restivo, R.H. Zeiler, N. el Sherif. 1985. Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circ. Res. 57:432-442.

    PubMed  CAS  Google Scholar 

  20. Han, J., and G.K. Moe. 1964. Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14:44-60.

    PubMed  CAS  Google Scholar 

  21. Irisawa, H., and R. Sato. 1986. Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ. Res. 59:348-355.

    PubMed  CAS  Google Scholar 

  22. Jalife, J. 2000. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62:25-50. doi:10.1146/annurev.physiol.62.1.25

    Article  PubMed  CAS  Google Scholar 

  23. Janse, M.J., and A.G. Kleber. 1981. Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ. Res. 49:1069-1081.

    PubMed  CAS  Google Scholar 

  24. Kagiyama, Y., J.L. Hill, and L.S. Gettes. 1982. Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circ. Res. 51:614-623.

    PubMed  CAS  Google Scholar 

  25. Keener, J.P. 1988. On the formation of circulating patterns of excitation in anisotropic excitable media. J. Math. Biol. 26:41-56.

    PubMed  CAS  Google Scholar 

  26. Kleber, A.G., and Y. Rudy. 2004. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431-488. doi:10.1152/physrev.00025.2003

    Article  PubMed  CAS  Google Scholar 

  27. Kucera, J.P., and Y. Rudy. 2001. Mechanistic insights into very slow conduction in branching cardiac tissue: a model study. Circ. Res. 89:799-806. doi:10.1161/hh2101.098442

    Article  PubMed  CAS  Google Scholar 

  28. Kuo, C.-S., C.P. Reddy, K. Munakata, and B. Surawicz. 1985. Arrhythmias dependent predominantly on dispersion of repolarization. Cardiac Electrophysiology and Arrhythmias. 277-285.

    Google Scholar 

  29. Laurita, K.R., and D.S. Rosenbaum. 2000. Interdependence of modulated dispersion and tissue structure in the mechanism of unidirectional block. Circ. Res. 87:922-928.

    PubMed  CAS  Google Scholar 

  30. Leon, L.J., and F.A. Roberge. 1991. Directional characteristics of action potential propagation in cardiac muscle. A model study. Circ. Res. 69:378-395.

    PubMed  CAS  Google Scholar 

  31. Luo, C.H., and Y. Rudy. 1991. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68:1501-1526.

    PubMed  CAS  Google Scholar 

  32. Naimi, S., B. Avitall, J. Mieszala, and H.J. Levine. 1977. Dispersion of effective refractory period during abrupt reperfusion of ischemic myocardium in dogs. Am. J. Cardiol. 39:407-412. doi:10.1016/S0002-9149(77)80097-0

    Article  PubMed  CAS  Google Scholar 

  33. Ogawa, S., I. Furuno, Y. Satoh, S. Yoh, K. Saeki, T. Sadanaga, H. Katoh, and Y. Nakamura. 1991. Quantitative indices of dispersion of refractoriness for identification of propensity to re-entrant ventricular tachycardia in a canine model of myocardial infarction. Cardiovasc. Res. 25:378-383. doi:10.1093/cvr/25.5.378

    Article  PubMed  CAS  Google Scholar 

  34. Ong, J.J., Y.M. Cha, J.M. Kriett, K. Boyce, G.K. Feld, and P.S. Chen. 1995. The relation between atrial fibrillation wavefront characteristics and accessory pathway conduction. J. Clin. Invest. 96:2284-2296. doi:10.1172/JCI118284

    Article  PubMed  CAS  Google Scholar 

  35. Padrini, R., S. Bova, G. Cargnelli, D. Piovan, and M. Ferrari. 1992. Effects of pinacidil on guinea-pig isolated perfused heart with particular reference to the proarrhythmic effect. Br. J. Pharmacol. 105:715-719.

    PubMed  CAS  Google Scholar 

  36. Qu, Z., H.S. Karagueuzian, A. Garfinkel, and J.N. Weiss. 2004. Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 286:H1310-H1321. doi:10.1152/ajpheart.00561.2003

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez, B., J.M. Ferrero, and B. Trenor. 2002. Mechanistic investigation of extracellular K + accumulation during acute myocardial ischemia: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 283:H490-H500.

    PubMed  CAS  Google Scholar 

  38. Romero, L., B. Trenor, J. M Ferrero, Jr., and J. Saiz. 2005. A sensitivity study of the safety factor for conduction in the myocardium. Comput. Cardiol. 32:873-876. doi:10.1109/CIC.2005.1588244

    Article  Google Scholar 

  39. Shaw, R.M., and Y. Rudy. 1997. Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. Circ. Res. 80:124-138.

    PubMed  CAS  Google Scholar 

  40. Shaw, R.M., and Y. Rudy. 1997. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81:727-741.

    PubMed  CAS  Google Scholar 

  41. Trenor, B., J.M. Ferrero, B. Rodriguez, and F. Montilla. 2005. Effects of pinacidil on reentrant arrhythmias generated during acute regional ischemia: A simulation study. Ann. Biomed. Eng. 33:897-906. doi:10.1007/s10439-005-3554-4

    Article  PubMed  Google Scholar 

  42. Trenor, B., L. Romero, J.M. Ferrero, Jr., J. Saiz, G. Molto, and J.M. Alonso. 2007. Vulnerability to Reentry in a Regionally Ischemic Tissue: A Simulation Study. Ann. Biomed. Eng. 35:1756-1770. doi:10.1007/s10439-007-9353-3

    Article  PubMed  Google Scholar 

  43. Tsuboi, N., I. Kodama, J. Toyama, and K. Yamada. 1985. Anisotropic conduction properties of canine ventricular muscles. Influence of high extracellular K + concentration and stimulation frequency. Jpn. Circ. J. 49:487-498.

    PubMed  CAS  Google Scholar 

  44. Wang, Y., and Y. Rudy. 2000. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol. 278:H1019-H1029.

    PubMed  CAS  Google Scholar 

  45. Watson, C.L., and M.R. Gold. 1995. Effect of intracellular and extracellular acidosis on sodium current in ventricular myocytes. Am. J. Physiol. 268:H1749-H1756.

    PubMed  CAS  Google Scholar 

  46. Weiss, J.N., N. Venkatesh, and S.T. Lamp. 1992. ATP-sensitive K + channels and cellular K + loss in hypoxic and ischaemic mammalian ventricle. J. Physiol. 447:649-673.

    PubMed  CAS  Google Scholar 

  47. Wilde, A.A., and G. Aksnes. 1995. Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia. Cardiovasc. Res. 29:1-15.

    PubMed  CAS  Google Scholar 

  48. Wit, A. L., and M. J. Janse. 1993. The ventricular arrhythmias of ischemia and infarction: electrophysiological mechanisms. Mount Kisko.

    Google Scholar 

  49. Yatani, A., A.M. Brown, and N. Akaike. 1984. Effect of extracellular pH on sodium current in isolated, single rat ventricular cells. J. Membr. Biol. 78:163-168. doi:10.1007/BF01869203

    Article  PubMed  CAS  Google Scholar 

  50. Zipes, D.P., and H.J. Wellens. 1998. Sudden cardiac death. Circulation 98:2334-2351.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the “Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica del Ministerio de Educación y Ciencia” of Spain (TEC 2005-04199 and TEC 2008-02090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Ferrero Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, L., Trénor, B., Alonso, J.M. et al. The Relative Role of Refractoriness and Source–Sink Relationship in Reentry Generation during Simulated Acute Ischemia. Ann Biomed Eng 37, 1560–1571 (2009). https://doi.org/10.1007/s10439-009-9721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9721-2

Keywords

Navigation