Skip to main content
Log in

Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is a widely accepted axiom that localized concentration of mechanical stress and large flexural deformation is closely related to the calcification and tissue degeneration in bioprosthetic heart valves (BHV). In order to investigate the complex BHV deformations and stress distributions throughout the cardiac cycle, it is necessary to perform an accurate dynamic analysis with a morphologically and physiologically realistic material specification for the leaflets. We have developed a stress resultant shell model for BHV leaflets incorporating a Fung-elastic constitutive model for in-plane and bending responses separately. Validation studies were performed by comparing the finite element predicted displacement and strain measures with the experimentally measured data under physiological pressure loads. Computed regions of stress concentration and large flexural deformation during the opening and closing phases of the cardiac cycle correlated with previously reported regions of calcification and/or mechanical damage on BHV leaflets. It is expected that the developed experimental and computational methodology will aid in the understanding of the complex dynamic behavior of native and bioprosthetic valves and in the development of tissue engineered valve substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aupart M. R., D. G. Babuty, L. Guesnier, Y. A. Meurisse, A. L. Sirinelli, M. A. Marchand. (1996) Double valve replacement with the Carpentier-Edwards pericardial valve: 10-year results. J. Heart Valve Dis. 5:312–316

    PubMed  CAS  Google Scholar 

  2. Chandran K. B., Kim S. H., Han G. (1991) Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J. Biomech. 24:385–395

    Article  PubMed  CAS  Google Scholar 

  3. De Hart J., Baaijens F. P., Peters G. W., Schreurs P. J. (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712

    Article  PubMed  Google Scholar 

  4. Engelmayr G. C., Hildebrand D. K., Sutherland F. W., Mayer J. E., Sacks M. S. (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2332

    Article  PubMed  CAS  Google Scholar 

  5. Fung Y. C. (1993) Biomechanics: mechanical properties of living tissues 2nd Ed. New York: Springer-Verlag

    Google Scholar 

  6. Gnyaneshwar R., Kumar R. K., Balakrishnan K. R. (2002) Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73:1122–1129

    Article  PubMed  Google Scholar 

  7. Grunkemeier G. L., Bodnar E. (1995) Comparative assessment of bioprosthesis durability in the aortic position. J. Heart Valve Dis. 4:49–55

    PubMed  CAS  Google Scholar 

  8. Grunkemeier G., Wu Y., Jin R. (2002) Statistical analysis of heart valve outcomes. J. Heart Valve Dis. 11(Suppl 1):S2–S7

    PubMed  Google Scholar 

  9. Hall A. F., Kovacs S. J. (1994) Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling. Ultrasound Med. Biol. 20:107–116

    Article  PubMed  CAS  Google Scholar 

  10. Harringer W., Pethig K., Hagl C., Meyer G. P., Haverich A. (1999) Ascending aortic replacement with aortic valve reimplantation. Circulation 100:II24–II28

    PubMed  CAS  Google Scholar 

  11. Harringer W., Pethig K., Hagl C., Wahlers T., Cremer J., Haverich A. (1999) Replacement of ascending aorta with aortic valve reimplantation: midterm results. Eur J Cardiothorac Surg. 15:803–807; discussion 7–8

    Article  PubMed  CAS  Google Scholar 

  12. Hole J. W. (1996) Hole’s human anatomy & physiology 7th ed. Dubuque: Wm. C. Brown Publishers

    Google Scholar 

  13. Howard I. C., Patterson E. A., Yoxall A. (2003) On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol 27:259–66

    Article  PubMed  CAS  Google Scholar 

  14. Iyengar A. K. S., Sugimoto H., Smith D. B., Sacks M. S. (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Annals of Biomedical Engineering. 29:963–73

    Article  PubMed  Google Scholar 

  15. Jamieson W. R., Munro A. I., Miyagishima R. T., Allen P., Burr L. H., Tyers G. F. (1995) Carpentier-Edwards standard porcine bioprosthesis: clinical performance to seventeen years. Ann Thorac Surg. 60:999–1006

    Article  PubMed  CAS  Google Scholar 

  16. Kim H., Chandran K. B., Sacks M. S., Lu J. (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng. 35:30–44

    Article  PubMed  Google Scholar 

  17. Kim H., Lu J., Sacks M. S., Chandran K. B. (2006) Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng. 128:717–24

    Article  PubMed  Google Scholar 

  18. Kovacs S. J., McQueen D. M., Peskin C. S. (2001) Modelling cardiac fluid dynamics and diastolic function. Phil. Trans. R. Soc. Lond. A. 359:1299–314

    Article  Google Scholar 

  19. Meyer T. E., Karamanoglu M., Ehsani A. A., Kovacs S. J. (2004) Left ventricular chamber stiffness at rest as a determinant of exercise capacity in heart failure subjects with decreased ejection fraction. J Appl Physiol 97:1667–72

    Article  PubMed  Google Scholar 

  20. Mirnajafi A., Raymer J., Scott M. J., Sacks M. S. (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials. 26:795–804

    Article  PubMed  CAS  Google Scholar 

  21. Oommen B. S., Karamanoglu M., Kovacs S. J. (2002) Can analysis of transmitral flow-velocity contours differentiate between alternative diastolic pressure-volume relations? Cardiovascular Engineering. 2:67–72

    Article  Google Scholar 

  22. Otto C. M. (2004) Valvular heart disease 2nd Ed. Philadelphia, Saunders

    Google Scholar 

  23. Pethig K., Milz A., Hagl C., Harringer W., Haverich A. (2002) Aortic valve reimplantation in ascending aortic aneurysm: risk factors for early valve failure. Ann Thorac Surg. 73:29–33

    Article  PubMed  Google Scholar 

  24. Sacks M. S. (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng. 121:551–5

    PubMed  CAS  Google Scholar 

  25. Sacks M. S., Chuong C. J., Templeton G. H., Peshock R. (1993) In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann Biomed Eng. 21:263–75

    Article  PubMed  CAS  Google Scholar 

  26. Sacks M. S., Schoen F. J. (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res. 62:359–71

    Article  PubMed  CAS  Google Scholar 

  27. Schoen F. J. (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis. 7:174–9

    PubMed  CAS  Google Scholar 

  28. Schoen F. J., Levy R. J. (1994) Pathology of substitute heart valves: new concepts and developments. J Card Surg. 9: 222–7

    CAS  Google Scholar 

  29. Schoen F. J., Levy R. J. (1999) Tissue heart valves: Current challenges and future research perspectives. Journal of Biomedical Materials Research. 47:439–65

    Article  PubMed  CAS  Google Scholar 

  30. Schoen F. J., Levy R. J. (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 79:1072–80

    Article  PubMed  Google Scholar 

  31. Schoen F. J., J.L. Robert, Henry R. (1992) Piehler. Pathological considerations in replacement cardiac valves. Cardiovascular Pathology. 1:29–52

    Article  Google Scholar 

  32. Simo J. C. (1993) On a Stress Resultant Geometrically Exact Shell-Model .7. Shell Intersections with 5/6-Dof Finite-Element Formulations. Computer Methods in Applied Mechanics and Engineering. 108:319–39

    Article  Google Scholar 

  33. Simo J. C., Fox D. D. (1989) On a Stress Resultant Geometrically Exact Shell-Model .1. Formulation and Optimal Parametrization. Computer Methods in Applied Mechanics and Engineering. 72:267–304

    Article  Google Scholar 

  34. Simo J. C., Fox D. D., Rifai M. S. (1989) On a Stress Resultant Geometrically Exact Shell-Model .2. The Linear-Theory - Computational Aspects. Computer Methods in Applied Mechanics and Engineering. 73:53–92

    Article  Google Scholar 

  35. Simo J. C., Fox D. D., Rifai M. S. (1990) On a Stress Resultant Geometrically Exact Shell-Model .3. Computational Aspects of the Nonlinear-Theory. Computer Methods in Applied Mechanics and Engineering. 79:21–70

    Article  Google Scholar 

  36. Simo J. C., Kennedy J. G. (1992) On a Stress Resultant Geometrically Exact Shell-Model .5. Nonlinear Plasticity - Formulation and Integration Algorithms. Computer Methods in Applied Mechanics and Engineering. 96:133–71

    Article  Google Scholar 

  37. Simo J. C., Rifai M. S., Fox D. D. (1990) On a Stress Resultant Geometrically Exact Shell-Model .4. Variable Thickness Shells with through-the-Thickness Stretching. Computer Methods in Applied Mechanics and Engineering. 81:91–126

    Article  Google Scholar 

  38. Simo J. C., Rifai M. S., Fox D. D. (1992) On a Stress Resultant Geometrically Exact Shell-Model .6. Conserving Algorithms or Nonlinear Dynamics. International Journal for Numerical Methods in Engineering. 34:117–64

    Article  Google Scholar 

  39. Smith D. B., Sacks M. S., Pattany P. M., Schroeder R. (1999) Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J Heart Valve Dis 8:25–33

    PubMed  CAS  Google Scholar 

  40. Smith D. B., Sacks M. S., Vorp D. A., Thornton M. (2000) Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann Biomed Eng 28:598–611

    Article  PubMed  CAS  Google Scholar 

  41. Stock U. A., Vacanti J. P., Mayer J. E. Jr., Wahlers T. (2002) Tissue engineering of heart valves – current aspects. Thorac Cardiovasc Surg 50:184–93

    Article  PubMed  CAS  Google Scholar 

  42. Sun W., Abad A., Sacks M. S. (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng. 127:905–14

    Article  PubMed  Google Scholar 

  43. Sun W., Sacks M. S., Sellaro T. L., Slaughter W. S., Scott M. J. (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng. 125:372–80

    Article  PubMed  Google Scholar 

  44. Taylor R. L. (2003) FEAP User Manual: v7.5., Berkeley. CA, University of California, Berkeley

    Google Scholar 

  45. Vesely I., Barber J. E., Ratliff N. B. (2001) Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J Heart Valve Dis 10:471–7

    PubMed  CAS  Google Scholar 

  46. Vyavahare N. R., Hirsch D., Lerner E., Baskin J. Z., Zand R., Schoen F. J., Levy R. J. (1998) Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res. 40:577–85

    Article  PubMed  CAS  Google Scholar 

  47. Weiss J. A., Maker B. N., Govindjee S. (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering. 135:107–28

    Article  Google Scholar 

  48. Yamauchi T., Taniguchi K., Kuki S., Masai T., Noro M., Nishino M., Fujita S. (2005) Evaluation of the mitral valve leaflet morphology after mitral valve reconstruction with a concept “coaptation length index”. J Card Surg. 20:432–5

    Google Scholar 

  49. Zienkiewicz O. C., Taylor R. L. (2000) The finite element method. Vol 1., 5th Ed. Oxford, Boston: Butterworth-Heinemann

    Google Scholar 

Download references

Acknowledgments

The partial support of this work by an USPHS grant from the National Heart, Lung, and Blood Institute (NIH: HL-071814) and the Iowa Department of Economic Development are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan B. Chandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Lu, J., Sacks, M.S. et al. Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model. Ann Biomed Eng 36, 262–275 (2008). https://doi.org/10.1007/s10439-007-9409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9409-4

Keywords

Navigation