Skip to main content
Log in

Development of Gradient Descent Adaptive Algorithms to Remove Common Mode Artifact for Improvement of Cardiovascular Signal Quality

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Background: Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Method: Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: \({\nabla = \partial\xi/\partial w=\partial E[\varepsilon_{\rm k}^{2}]/\partial w_{\rm k}}\), where the error ɛ is the difference between primary and weighted reference signals. ∇ was estimated from Δɛ2 and Δw without using a variable Δw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Δɛ2 using fixed finite differences ± Δw in parallel during each discrete time k. The ALOPEX algorithm computed Δɛ2· Δw from time k to k + 1 to estimate ∇, with a random number added to account for Δɛ2 · Δw→ 0 near the optimal weighting. Results: Using simulated data, both algorithms stably converged to the optimal weighting within 50–2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. Conclusions: ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ademoglu A., Micheli-Tzanakou E. (1997) Analysis of pattern reversal visual evoked potentials (prvep) in Alzheimer’s disease by spline wavelets. IEEE Transactions Biomedical Engineering 44:881–890

    Article  PubMed  CAS  Google Scholar 

  2. Akay M. (1994) Biomedical signal processing. Academic Press, San Diego

    Google Scholar 

  3. Akay M. (1996) Detection and estimation methods for biomedical signals. Academic Press, San Diego

    Google Scholar 

  4. Anderson M. J., Micheli-Tzanakou E. (2002) Auditory stimulus optimization with feedback from fuzzy clustering of neuronal responses. IEEE Trans Information Technol Biomed 6:159–170

    Article  Google Scholar 

  5. Angelini E. D., Ciaccio E. J. (2003) Optimized region finding and edge detection of knee cartilage surfaces from magnetic resonance images. Ann Biomed Eng 31:336–345

    Article  PubMed  Google Scholar 

  6. Camps-Valls G., Martinez-Sober M., Soria-Olivas E., Magdalena-Benedito R., Calpe-Maravilla J., Guerrero-Martinez J. (2004) Foetal ECG recovery using dynamic neural networks. Artificial Intelligence in Medicine 31:197–209

    PubMed  Google Scholar 

  7. Ciaccio E. J. (2000) Localization of the slow conduction zone during reentrant ventricular tachycardia. Circulation 102:464–469

    PubMed  CAS  Google Scholar 

  8. Ciaccio E. J., Chow A. W., Davies D. W., Wit A. L., Peters N. S. (2004) Localization of the isthmus in reentrant circuits by analysis of electrograms derived from clinical noncontact mapping during sinus rhythm and ventricular tachycardia. J Cardiovasc Electrophysiol 15:27–36

    Article  PubMed  Google Scholar 

  9. Ciaccio, E. J. and G. M. Drzewiecki. Array sensor for arterial pulse recording-reduction of motion artifact. In Proceedings of the 1988 Fourteenth Annual IEEE Northeast Bioengineering Conference, 10–11 March 1988, pp. 66–69

  10. Ciaccio, E. J., G. M. Drzewiecki, and E. H. Karam. Algorithm for reduction of mechanical noise in arterial pulse recording with tonometry. In Proceedings of the 1989 Fifteenth Annual IEEE Northeast Bioengineering Conference, 27–28 March, 1989, pp. 161–162

  11. Ciaccio E. J., Saltman A. E., Hernandez O. M., Bornholdt R. J., Coromilas J. (2005) Multichannel data acquisition system for mapping the electrical activity of the heart. Pacing Clin Electrophysiol 28:826–838

    Article  PubMed  Google Scholar 

  12. Ciaccio E. J., Scheinman M. M., Fridman V., Schmitt H., Coromilas J., Wit A. L. (1999) Dynamic changes in electrogram morphology at functional lines of block in reentrant circuits during ventricular tachycardia in the infarcted canine heart: a new method to localize reentrant circuits from electrogram features using adaptive template matching. J Cardiovasc Electrophysiol 10:194–213

    Article  PubMed  CAS  Google Scholar 

  13. Ciaccio E. J., Scheinman M. M., Wit A. L. (2000) Relationship of specific electrogram characteristics during sinus rhythm and ventricular pacing determined by adaptive template matching to the location of functional reentrant circuits that cause ventricular tachycardia in the infarcted canine heart. J Cardiovasc Electrophysiol 11:446–457

    Article  PubMed  CAS  Google Scholar 

  14. Ciaccio E. J., Wit A. L., Scheinman M. M., Dunn S. M., Akay M., Coromilas J. (1995) Prediction of the location and time of spontaneous termination of reentrant ventricular tachycardia for radiofrequency catheter ablation therapy. J Electrocardiol 28 (Suppl):165–173

    Article  PubMed  Google Scholar 

  15. Dasey T. J., Micheli-Tzanakou E. (2000) Detection of multiple sclerosis with visual evoked potentials – an unsupervised computational intelligence system. IEEE Trans Information Technol Biomed 4:216–224

    Article  CAS  Google Scholar 

  16. Ferrara E. R., Widrow B. (1982) Fetal electrocardiogram enhancement by time-sequenced adaptive filtering. IEEE Transactions Biomedical Engineering 29:458–460

    Article  PubMed  CAS  Google Scholar 

  17. Harth E., Tzanakou E. (1974) Alopex - Stochastic method for determining visual receptive-fields. Vision Research 14:1475–1482

    Article  PubMed  CAS  Google Scholar 

  18. Melissaratos L., Micheli-Tzanakou E. (1989) A parallel implementation of the ALOPEX process. J Med Syst 13:243–252

    Article  PubMed  CAS  Google Scholar 

  19. Micheli-Tzanakou E. (1994) Neural networks and optimization techniques in neural waveform analysis. J Medical and Life Sciences Engineering 13:58–67

    Google Scholar 

  20. Micheli-Tzanakou E., Sheikh H., Zhu B. (1997) Neural networks and blood cell identification. J Med Syst 21:201–210

    Article  PubMed  CAS  Google Scholar 

  21. Tzanakou E., Michalak R., Harth E. (1979) ALOPEX process - visual receptive-fields by response feedback. Biological Cybernetics 35:161–174

    Article  CAS  Google Scholar 

  22. Widrow B. (1973) Rubber-Mask Technique 1. Pattern measurement and analysis. Pattern Recognition 5:175–197

    Article  Google Scholar 

  23. Widrow B. (1973) Rubber-Mask Technique 2. Pattern storage and recognition. Pattern Recognition 5:199–211

    Article  Google Scholar 

  24. Widrow B. (2005) Thinking about thinking: the discovery of the LMS algorithm. IEEE Signal Processing Magazine 22:100–106

    Article  Google Scholar 

  25. Widrow B., Glover J. R. Jr, McCool J. M., Kaunitz J., Williams C. S., Hearn R. H., Zeidler J. R., Dong E. Jr, Goodlin R. C. (1975) Adaptive noise cancelling. Principles and applications. Proceedings of the IEEE 63:1692–1716

    Article  Google Scholar 

  26. Widrow B., Kamenetsky M. (2003) Statistical efficiency of adaptive algorithms. Neural Networks 16:735–744

    Article  PubMed  Google Scholar 

  27. Widrow B., McCool J. M. (1976b) Comparison of adaptive algorithms based on methods of steepest descent and random search. IEEE Transactions on Antennas and Propagation 24:615–637

    Article  Google Scholar 

  28. Widrow B., McCool J. M., Larimore M. G., Johnson C. R. Jr. (1976) Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE 64:1151–1162

    Google Scholar 

  29. Widrow B., Stearns S. D. (1985) Adaptive signal processing. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  30. Yelderman M., Widrow B., Cioffi J. M., Hesler E., Leddy J. A. (1983) ECG enhancement by adaptive cancellation of electrosurgical interference. IEEE Transactions Biomedical Engineering 30:392–398

    Article  PubMed  CAS  Google Scholar 

  31. Zarzoso V., Nandi A. K. (2001) Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Transactions Biomedical Engineering 48:12–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by an Established Investigator Award #9940237N from the American Heart Association and a Whitaker Foundation Research Award to Dr Ciaccio, and USPS National Institutes of Health – NHLBI Program Project Grant HL30557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Ciaccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciaccio, E.J., Micheli-Tzanakou, E. Development of Gradient Descent Adaptive Algorithms to Remove Common Mode Artifact for Improvement of Cardiovascular Signal Quality. Ann Biomed Eng 35, 1146–1155 (2007). https://doi.org/10.1007/s10439-007-9294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9294-x

Keywords

Navigation