Skip to main content
Log in

Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s−1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had very similar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bharadvaj B.K., Mabon R.F., Giddens D.P.: Steady flow in a model of the human carotid bifurcation. Part I—flow visualization. J. Biomech. 15, 349–362 (1982)

    Article  Google Scholar 

  2. Bharadvaj B.K., Mabon R.F., Giddens D.P.: Steady flow in a model of the human carotid bifurcation. Part II—Laser Doppler anemometer measurements. J. Biomech. 15, 363–378 (1982)

    Article  Google Scholar 

  3. Jou L.D., Berger S.A.: Numerical simulation of the flow in the carotid bifurcation1. Theor. Comp. Fluid Dyn. 10, 239–248 (1998)

    Article  MATH  Google Scholar 

  4. Perktold K., Resch M., Peter R.O.: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 24, 409–420 (1991)

    Article  Google Scholar 

  5. Ku D.N., Giddens D.P.: Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3, 31–39 (1983)

    Google Scholar 

  6. Rindt C.C.M., Steenhoven A.A.V.: Unsteady flow in a rigid 3-D model of the carotid artery bifurcation. J. Biomech. Eng. Trans. ASME 118, 90–96 (1996)

    Article  Google Scholar 

  7. Rene B., Rappitsch G.: Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33, 137–144 (2000)

    Article  Google Scholar 

  8. Batra R.L., Jena B.: Flow of a Casson fluid in a slightly curved tube. Int. J. Eng. Sci. 29, 1245–1258 (1991)

    Article  MATH  Google Scholar 

  9. Barbara M., Johnston P.R., Johnston S.C., David K.: Non- Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39, 1116–1128 (2006)

    Article  Google Scholar 

  10. Chen J., Lu X.Y.: Numerical investigation of the non- Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J. Biomech. 39, 818–832 (2006)

    Article  Google Scholar 

  11. Das B., Batra R.L.: Secondary flow of a Casson fluid in a slightly curved tube. Int. J. Non-Linear Mech. 28, 567–577 (1993)

    Article  MATH  Google Scholar 

  12. Hernán A.G., Nelson O.M.: On predicting unsteady non-Newtonian blood flow. Appl. Math. Comput. 170, 909–923 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Perktold K., Resch M., Florian H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991)

    Article  Google Scholar 

  14. Siauw W.L., Ng E.Y.K., Mazumdar J.: Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme. Med. Eng. Phys. 22, 265–277 (2000)

    Article  Google Scholar 

  15. Ma P., Li X., Ku D.N.: Convective mass transfer at the carotid bifurcation. J. Biomech. 30, 565–571 (1997)

    Article  Google Scholar 

  16. Hyun S., Kleinstreuer C., Archie J.P. Jr: Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys. 22, 13–27 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan.

Additional information

This project was supported by the National Natural Science Foundation of China (10527001, 10632010, 10672015).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Jiang, W., Zou, Y. et al. Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation. Acta Mech Sin 25, 249–255 (2009). https://doi.org/10.1007/s10409-009-0227-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0227-9

Keywords

Navigation