Skip to main content
Log in

Molecular mechanisms of cholestasis

Molekulare Mechanismen der Cholestase

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren hat sich unser Verständnis der molekularen Mechanismen der Cholestase zunehmend vertieft. Mutationen einzelner Transportergene können angeborene Cholestasesyndrome verursachen, während bei erworbenen Cholestaseformen cholestatische Noxen (wie z. B. Medikamente, Hormone, inflammatorische Zytokine) zu einer veränderten Transporterexpression und -funktion führen. Diese Veränderungen können einerseits die Cholestase verstärken, andererseits werden so hepatoprotektive Mechanismen aktiviert und eine alternative "retrograde" Gallensäureexkretion in die systemische Zirkulation begünstigt. Dies führt zu einer gesteigerten renalen Elimination toxischer gallepflichtiger Substanzen (z. B. Gallensäuren, Bilirubin) bei Cholestase. Zusätzlich werden Gallensäuren in der Leber vermehrt entgiftet. So machen Hydroxylierung, Sulfatierung und Glucuronidierung Gallensäuren hydrophiler und damit weniger toxisch. Diese molekularen Mechanismen werden durch die Wirkung von Kernrezeptoren vermittelt. Die Aktivität dieser Rezeptoren selbst wird durch Gallensäuren, inflammatorische Zytokine, Medikamente und Hormone reguliert. Zusätzlich zu den transkriptionellen Veränderungen, werden auch ein verminderter Einbau und gesteigerter Ausbau von Transporterprotein aus der Zellmembran beobachtet. Störungen der Zellpolarität, des Zytoskeletts und der Zellkontakte sind ebenso involviert. Das genaue Verständnis dieser molekularen Veränderungen sollte es uns in Zukunft ermöglichen, neue Therapieansätze für cholestatische Lebererkrankungen zu entwickeln. Diese Therapieformen könnten darauf abzielen, eine gestörte Transporterexpression wiederherzustellen und die hepatischen Verteidigungsmechanismen gegen toxische Gallensäuren weiter zu stimulieren.

Summary

Recent progress has enhanced our understanding of the pathogenesis of cholestatic liver diseases. Mutations in genes encoding for hepatobiliary transport systems can cause hereditary cholestatic syndromes and exposure to cholestatic agents (drugs, hormones, inflammatory cytokines) can lead to reduced expression and function of hepatic uptake and excretory systems in acquired forms of cholestasis. In addition to transporter changes which cause or maintain cholestasis, some alterations in transporter gene expression can be viewed as hepatoprotective mechanisms aimed at reducing intrahepatic accumulation of toxic biliary constituents such as bile acids and bilirubin. Alternative excretion of bile acids via the basolateral membrane into the systemic circulation facilitates the renal elimination of bile acids into urine. Moreover, increased bile acid hydroxylation, sulfation and glucuronidation by phase I and II metabolizing enzymes renders bile acids more hydrophilic and less toxic. These molecular changes are mediated by specific nuclear receptors which are regulated by bile acids, proinflammatory cytokines, drugs, and hormones. In addition to transcriptional changes, reduced transporter protein insertion to or increased retrieval from the cell membrane as well as other mechanisms such as altered cell polarity, disruption of cell-to-cell junctions and cytoskeletal changes are involved in the pathogenesis of cholestasis. Understanding the detailed mechanisms regulating expression of transport systems and enzymes is essential for the development of novel therapeutic agents. Such future approaches could specifically target nuclear receptors thus restoring defective transporter expression and supporting hepatic defense mechanisms against toxic bile acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Jansen PL, Muller M, Sturm E (2001) Genes and cholestasis. Hepatology 34: 1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83: 633–671

    PubMed  CAS  Google Scholar 

  • Boyer JL (1996) Bile duct epithelium: frontiers in transport physiology. Am J Physiol 270: G1–G5

    PubMed  CAS  Google Scholar 

  • Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64: 635–661

    Article  PubMed  CAS  Google Scholar 

  • Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, Klomp LW, Lomri N, Berger R, Scharschmidt BF, Knisely AS, Houwen RH, Freimer NB (1998) A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ (1998) A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20: 233–238

    Article  PubMed  CAS  Google Scholar 

  • de Vree JM, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze JF, Desrochers M, Burdelski M, Bernard O, Oude Elferink RP, Hadchouel M (1998) Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 95: 282–287

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Weiglein AH, Lammert F, Marschall HU, Tsybrovskyy O, Zatloukal K, Denk H, Trauner M (2002) Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123: 1238–1251

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127: 261–274

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin E, de Vree JM, Cresteil D, Sokal EM, Sturm E, Dumont M, Scheffer GL, Paul M, Burdelski M, Bosma PJ, Bernard O, Hadchouel M, Elferink RP (2001) The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120: 1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin E (2001) Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases. Semin Liver Dis 21: 551–562

    Article  PubMed  CAS  Google Scholar 

  • Balistreri WF (1999) Inborn errors of bile acid biosynthesis and transport. Novel forms of metabolic liver disease. Gastroenterol Clin North Am 28: 145–72, vii

    Google Scholar 

  • Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP (1997) A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 25: 1539–1542

    Article  PubMed  CAS  Google Scholar 

  • Sheth S, Shea JC, Bishop MD, Chopra S, Regan MM, Malmberg E, Walker C, Ricci R, Tsui LC, Durie PR, Zielenski J, Freedman SD (2003) Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum Genet 113: 286–292

    Article  PubMed  Google Scholar 

  • Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ (2000) Drug- and estrogen-induced cholestasis trough inhibition of the paepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118: 422–430

    Article  PubMed  CAS  Google Scholar 

  • Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33: 633–646

    Article  PubMed  CAS  Google Scholar 

  • Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall HU, Zatloukal K, Denk H, Trauner M (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38: 717–727

    Article  PubMed  CAS  Google Scholar 

  • Raedsch R, Lauterburg BH, Hofmann AF (1981) Altered bile acid metabolism in primary biliary cirrhosis. Dig Dis Sci 26: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Berge Henegouwen GP, Brandt KH, Eyssen H, Parmentier G (1976) Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut 17: 861–869

    PubMed  Google Scholar 

  • Phillips MJ, Poucell S, Oda M (1986) Mechanisms of cholestasis. Lab Invest 54: 593–608

    PubMed  CAS  Google Scholar 

  • Trauner M, Meier PJ, Boyer JL (1998) Molecular pathogenesis of cholestasis. N Engl J Med 339: 1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294: 1866–1870

    Article  PubMed  CAS  Google Scholar 

  • Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433: 397–412

    Article  PubMed  CAS  Google Scholar 

  • Trauner M, Graziadei IW (1999) Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther 13: 979–996

    Article  PubMed  CAS  Google Scholar 

  • Paumgartner G, Beuers U (2004) Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis 8: 67–81

    Article  PubMed  Google Scholar 

  • Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36: 525–531

    Article  PubMed  CAS  Google Scholar 

  • Beuers U, Bilzer M, Chittattu A, Kullak-Ublick GA, Keppler D, Paumgartner G, Dombrowski F (2001) Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33: 1206–1216

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski F, Stieger B, Beuers U (2006) Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Invest 86: 166–174

    Article  PubMed  CAS  Google Scholar 

  • Podesta A, Lopez P, Terg R, Villamil F, Flores D, Mastai R, Udaondo CB, Companc JP (1991) Treatment of pruritus of primary biliary cirrhosis with rifampin. Dig Dis Sci 36: 216–220

    Article  PubMed  CAS  Google Scholar 

  • Bloomer JR, Boyer JL (1975) Phenobarbital effects in cholestatic liver diseases. Ann Intern Med 82: 310–317

    PubMed  CAS  Google Scholar 

  • Huang W, Zhang J, Moore DD (2004) A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. J Clin Invest 113: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Marschall HU, Wagner M, Zollner G, Fickert P, Diczfalusy U, Gumhold J, Silbert D, Fuchsbichler A, Benthin L, Grundstrom R, Gustafsson U, Sahlin S, Einarsson C, Trauner M (2005) Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 129: 476–485

    Article  PubMed  Google Scholar 

  • Wagner M, Halilbasic E, Marschall HU, Zollner G, Fickert P, Langner C, Zatloukal K, Denk H, Trauner M (2005) CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42: 420–430

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A (2004) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127: 1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A (2005) Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 313: 604–612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Trauner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zollner, G., Trauner, M. Molecular mechanisms of cholestasis. Wien Med Wochenschr 156, 380–385 (2006). https://doi.org/10.1007/s10354-006-0312-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-006-0312-7

Schlüsselwörter

Keywords

Navigation