Skip to main content

Advertisement

Log in

Predicting natural forest regeneration: a statistical model based on inventory data

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Regenerating forest stands through natural seedlings is a commonly accepted silvicultural strategy in Germany. To plan for and increase natural regeneration within a given stand, foresters must be able to estimate whether the stand in its current state can produce sufficient saplings to replace the overstory. In this paper, we present two approaches to building a model that can estimate the probability of natural regeneration occurring, based on variables that are typically readily available from forest inventories. To estimate model parameters we used the large database of the third National Forest Inventory, which covers forest stands and sites across the whole of Germany, as well as weather and soil data. We examined how these variables impact the emergence of natural regeneration, ultimately fitting a model that can predict the occurrence of natural regeneration in 72% of cases. The influence of the variables on the predicted occurrence of natural regeneration was mixed, with most stand variables contributing only minor impact and most likely influencing natural regeneration via complex interactions. The exception was vertical structure (number of stand layers), which accounted for a large proportion of the goodness-of-fit of the model. An important finding was that forest ownership structure is a key variable for the prediction of the presence of regeneration. Data from this study support the assumption that some forest owners manage their stands in a way that fosters natural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Backhaus K, Erichson B, Weiber R, Plinke W (2016) Discriminant analysis. In: Backhaus K, Erichson B, Plinke W, Weiber R (eds) Multivariate analysemethoden. Springer, Berlin, pp 215–282. doi:10.1007/978-3-662-46076-4_5 (in German)

    Chapter  Google Scholar 

  • Bauer W, Braun W, Braunger M, Dörr T, Ebinger T, Göckel C, Karopka, M, Mann P, Morell M, Schmid R, Thumm H, Wieners M (2009) Seedlings and planting. Ministry for Nutrition and Countryside (in German)

  • Bavarian Ministry for Nutrition, Agriculture and Forestry (2010) Planting and nursing forest stands (in German)

  • Bavarian State Forests (2008) Silvicultural principles of the Bavarian State Forest (in German)

  • Bitterlich W (1984) The relascope idea. Relative measurements in forestry. Commonwealth Agricultural Bureaux, Farnham Royal, Slough

    Google Scholar 

  • Burschel P, Huss J (2003) Compendium of silviculture. A guideline for academic studies and practice, 3rd edn. Ulmer, Stuttgart (in German)

    Google Scholar 

  • Cramér H (1999) Mathematical methods of statistics. Nineteenth print. Princeton University Press, Princeton (Princeton landmarks in mathematics and physics)

  • Dodson EK, Root HT (2013) Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. For Ecol Manag 302:163–170. doi:10.1016/j.foreco.2013.03.050

    Article  Google Scholar 

  • Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35(5–6):352–359. doi:10.1016/S1532-0464(03)00034-0

    Article  PubMed  Google Scholar 

  • Esri Inc (2014) ArcGIS. Esri Inc., Redlands

    Google Scholar 

  • Faltl W (2011) Principles of hunting in the Bavarian State Forest. Bayerische Staatsforsten AöR, Regensburg (in German)

    Google Scholar 

  • Ferguson DE (1996) Modeling natural regeneration establishment in the northern Rocky Mountains of the U.S.A.. In: Conference on modelling regeneration success and early growth of forest stands, pp 30–40

  • Ferguson DE, Stage AR, Boyd RJ (1986) Predicting regeneration in the grand fir-cedar-hemlock ecosystem of the northern Rocky Mountains, vol 26. Forest science. Monograph. Society of American Foresters, Washington

    Google Scholar 

  • Fortin Mathieu, DeBlois J (2007) Modeling tree recruitment with zero-inflated models: the example of hardwood stands in Southern Quebec, Canada. For Sci 53(4):529–539

    Google Scholar 

  • Gaston AJ, Sharpe ST, Stockton S, Golumbia TE, Martin JL (2008) Reduction in deer numbers on Reef Island and SGang Gwaay: progress, results, and vegetation changes. In: Gaston AJ, Golumbia TE, Martin J-L, Sharpe ST (eds) Lessons from the Islands: proceedings from the Research Group on Introduced Species 2002 symposium

  • German Weather Service (2016) Climate data. ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/monthly/. 11 Oct 2016

  • German Weather Service (2017) The phenological clock. http://www.dwd.de/DE/klimaumwelt/klimaueberwachung/phaenologie/produkte/phaenouhr/phaenouhr.html?nn=575800. 23 Feb 2017

  • Hallikainen V, Hyppönen M, Hyvönen J, Niemelä J (2007) Establishment and height development of harvested and naturally regenerated Scots pine near the timberline in North-East Finnish Lapland. Silva Fenn. doi:10.14214/sf.308

    Google Scholar 

  • Harmer R (2001) The effect of plant competition and simulated summer browsing by deer on tree regeneration. J Appl Ecol 38(5):1094–1103. doi:10.1046/j.1365-2664.2001.00664.x

    Article  Google Scholar 

  • Harrell F (2015) rms: regression modeling strategies. https://CRAN.R-project.org/package=rms/. 11 Oct 2016

  • Hartwich R, Behrens J, Eckelmann W, Haase G, Richter A, Roeschmann G, Schmidt R (1998) Soil map of the Federal Republic of Germany 1:1000000(BÜK 1000). Hannover

  • Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley series in probability and statistics

  • Hothorn T, Müller J (2010) Large-scale reduction of ungulate browsing by managed sport hunting. For Ecol Manag 260(9):1416–1423

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Hyppönen M, Alenius V, Valkonen S (2005) Models for the establishment and height development of naturally regenerated Pinus sylvestris in Finnish Lapland. Scand J For Res 20(4):347–357. doi:10.1080/02827580510036391

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless srtm data V3. version: International Centre for Tropical Agriculture (CIAT). Online verfügbar unter http://srtm.csi.cgiar.org

  • Jonášová M, Vávrová E, Cudlín P (2010) Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. For Ecol Manag 259(6):1127–1134. doi:10.1016/j.foreco.2009.12.027

    Article  Google Scholar 

  • Kleinbaum DG, Klein M (2010) Logistic regression: a self-learning text, vol Statistics for biology and health, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Klopcic M, Boncina A (2012) Recruitment of tree species in mixed selection and irregular shelterwood forest stands. Ann For Sci 69(8):915–925. doi:10.1007/s13595-012-0224-1

    Article  Google Scholar 

  • Klopcic M, Poljanec A, Boncina A (2012) Modelling natural recruitment of European beech (Fagus sylvatica L.). For Ecol Manag 284:142–151. doi:10.1016/j.foreco.2012.07.049

    Article  Google Scholar 

  • Kuijper DP, Jędrzejewska B, Brzeziecki B, Churski M, Jędrzejewski W, Żybura H (2010) Fluctuating ungulate density shapes tree recruitment in natural stands of the Białowieża Primeval Forest, Poland. J Veg Sci 21(6):1082–1098. doi:10.1111/j.1654-1103.2010.01217.x

    Article  Google Scholar 

  • Landesbetrieb Forst Baden-Württemberg (2014): Principles of statewide types of forest development. Landesbetrieb Forst Baden-Württemberg. http://www.forstbw.de/fileadmin/forstbw_infothek/forstbw_praxis/wet/ForstBW_Waldentwicklung_web.pdf (in Germany). 11 Oct 2016

  • Larsen DR, Metzger MA, Johnson PS (1997) Oak regeneration and overstory density in the Missouri Ozarks. Can J For Res 27(6):869–875. doi:10.1139/x97-010

    Article  Google Scholar 

  • Le Chessie S, van Houwelingen JC (1991) A Goodness-of-Fit Test for Binary Regression Models, Based on Smoothing Methods. Biometrics 47(4):1267–1282. doi:10.2307/2532385

    Article  Google Scholar 

  • Lele SR, Keim JL, Solymos P (2015) ResourceSelection: resource selection (probability) functions for use-availability. https://CRAN.R-project.org/package=ResourceSelection/. 11 Oct 2016

  • Lemeshow S, Hosmer DW (1982) A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 115(1):92–106

    Article  CAS  PubMed  Google Scholar 

  • Lexerød NL (2005) Recruitment models for different tree species in Norway. Forest Ecol Manag 206(1–3):91–108. doi:10.1016/j.foreco.2004.11.001

    Article  Google Scholar 

  • Lexerød N, Eid T (2005) Recruitment models for Norway spruce, Scots pine, birch and other broadleaves in young growth forests in Norway. Silva Fenn. doi:10.14214/sf.376

    Google Scholar 

  • Liira J, Sepp T, Kohv K (2011) The ecology of tree regeneration in mature and old forests: combined knowledge for sustainable forest management. J For Res Jpn 16(3):184–193. doi:10.1007/s10310-011-0257-6

    Article  Google Scholar 

  • Lucas-Borja ME, Candel-Pérez D, Morote FGA, Onkelinx T, Tíscar PA, Balandier P (2016) Pinus nigra Arn ssp salzmannii seedling recruitment is affected by stand basal area, shrub cover and climate interactions. Ann For Sci 73(3):649–656. doi:10.1007/s13595-016-0550-9

    Article  Google Scholar 

  • Lynch TB, Nkouka J, Huebschmann MM, Guldin JM (2003) Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities. For Sci 49(4):577–584

    Google Scholar 

  • Miina J, Saksa T (2013) Predicting establishment of tree seedlings in regeneration areas of Picea abies in Southern Finland. Balt For 19(2):187–200

    Google Scholar 

  • Nilsson U, Gemmel P, Johansson U, Karlsson M, Welander T (2002) Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. For Ecol Manag 161(1–3):133–145. doi:10.1016/S0378-1127(01)00497-2

    Article  Google Scholar 

  • Nyland RD (2007) Silviculture: concepts and applications, 2nd edn. Waveland Press, Long Grove

    Google Scholar 

  • Osman KT (2013) Soils: principles, properties and management. Springer, Dordrecht

    Book  Google Scholar 

  • Polley H (2011) Survey instructions for the 3rd National Forest Inventory (2011–2012). Federal Ministry for Nutrition, Agriculture and Consumer Protection, Bonn

    Google Scholar 

  • Polley H, Hennig P, Kroiher F, Marks A, Riedel T, Schmid U, Schwitzgebel F, Stauber T (2015) The forests in Germany: Selected results of the Third National Forest Inventory. Berlin

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264. doi:10.1016/j.foreco.2014.04.027

    Article  Google Scholar 

  • Príncipe A, Nunes A, Pinho P, do Rosário L, Correia O, Branquinho C (2014) Modeling the long-term natural regeneration potential of woodlands in semiarid regions to guide restoration efforts. Eur J For Res 133(4):757–767. doi:10.1007/s10342-014-0787-5

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Rencher AC (2002) Methods of multivariate analysis, Wiley series in probability and mathematical statistics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Schütt P (2008) Lexikon der Nadelbäume. Die große Enzyklopädie mit über 800 Farbfotos unter Mitwirkung von 30 Experten. Lizenzausg. für Nikol Verl.-Ges. Wiley, Hamburg

    Google Scholar 

  • Schweiger J, Sterba H (1997) A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria. For Ecol Manag 97(2):107–118. doi:10.1016/S0378-1127(97)00092-3

    Article  Google Scholar 

  • Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):7881

    Article  Google Scholar 

  • Staatsbetrieb Sachsenforst (2014) Hunting in SaxonyForst. Staatsbetrieb Sachsenforst, Pirna (in Germany)

  • Stange F (2007) Soil types of the surface soil of Germany 1:1.000.000. https://produktcenter.bgr.de/terraCatalog/OpenSearch.do?search=45E74823-B-4BB7-866E−5E84DA81301F%5C&type=/Query/OpenSearch.do

  • Stewart JD, Landhäusser SM, Stadt KJ, Lieffers VJ (2001) Predicting natural regeneration of white spruce in boreal mixedwood understories. For Chron 77(6):1006–1013. doi:10.5558/tfc771006-6

    Article  Google Scholar 

  • Tegelmark DO (1998) Site factors as multivariate predictors of the success of natural regeneration in Scots pine forests. Forest Ecol Manag 109(1–3):231–239. doi:10.1016/S0378-1127(98)00255-2

    Article  Google Scholar 

  • Thünen-Institut (2012) Third Federal Forest Inventory—Results database. ThünenInstitut. https://bwi.info/. 11 Oct 2016

  • ThüringenForst (2015) Our forest with game: hunting ThüringenForst. ThüringenForst, Erfurt (in Germany)

  • Tremblay JP, Huot J, Potvin F (2007) Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J Appl Ecol 44(3):552–562

    Article  Google Scholar 

  • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231. doi:10.1016/S0895-4356(96)00002-9

    Article  CAS  PubMed  Google Scholar 

  • Vanclay JK (1992) Modelling regeneration and recruitment in a tropical rain forest. Can J For Res 22(9):1235–1248. doi:10.1139/x92-165

    Article  Google Scholar 

  • Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35. doi:10.1002/1097-0142(1950)3:1<32:AID-CNCR2820030106>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the German Federal Agency for Nature Conservation (BfN) with resources of the Federal Programme for biological diversity (Bundesprogramm Biologische Vielfalt) from the German Federal Ministry for Environment, Nature Conservation, Construction and Nuclear Safety (BMUB). We also thank Elizabeth Gosling and Chelsea Jones for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kolo.

Additional information

Communicated by Lluís Coll.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolo, H., Ankerst, D. & Knoke, T. Predicting natural forest regeneration: a statistical model based on inventory data. Eur J Forest Res 136, 923–938 (2017). https://doi.org/10.1007/s10342-017-1080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1080-1

Keywords

Navigation