Skip to main content

Advertisement

Log in

Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40 years. In the complete absence of browsing, the density of small trees increased slightly after 60 years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manage 88:43–53

    Article  Google Scholar 

  • Ammer C, Weber M (1999) Impact of silvicultural treatments on natural regeneration of a mixed mountain forest in the Bavarian Alps. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HI, Franc A (eds) Management of mixed-species forest: silviculture and economics. DLO Institute for Forestry and Nature Reserach, Wageningen, pp 68–78

    Google Scholar 

  • Bachofen H, Zingg A (2001) Effectiveness of structure improvement thinning on stand structure in subalpine Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manage 145:137–149

    Article  Google Scholar 

  • Bachofen H, Zingg A (2005) Auf dem Weg zum Gebirgsplenterwald: Kurzzeiteffekte von Durchforstungen auf die Struktur subalpiner Fichtenwälder. Schweiz Z Forstwes 156:456–466

    Google Scholar 

  • Bertalanffy Lv (1957) Quantitative laws in metabolism and growth. Quart Rev Biol 32:217–231

    Article  Google Scholar 

  • Brändli UB (1996) Wildschäden in der Schweiz—Ergebnisse des ersten Landesforstinventars 1983–1985. In: Eidg. Forschungsantstalt WSL (ed). Wild im Wald—Landschaftsgestalter oder Waldzerstörer? Birmensdorf, pp 15–24

  • Brändli UB, Herold A (1999) LFI 2-Schutzwald. In: Brassel P, Brändli UB (eds) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Haupt, Bern

    Google Scholar 

  • Brang P (1998) Early seedling establishment of Picea abies in small forest gaps in the Swiss Alps. Can J For Res 28:626–639

    Article  Google Scholar 

  • Brang P, Duc P (2002) Zu wenig Verjüngung im Schweizer Gebirgs-Fichtenwald: Nachweis mit einem neuen Modellansatz. Schweiz Z Forstwes 153:219–227

    Google Scholar 

  • Brang P, Schönenberger W, Ott E, Gardner RH (2001) Forests as protection from natural hazards. In: Evans J (ed) The forests handbook. Blackwell Science, Oxford, pp 53–81

    Google Scholar 

  • Brassel P, Brändli UBE (1999) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Haupt, Bern

    Google Scholar 

  • Bugmann H (1994) On the ecology of mountainous forests in a changing climate: a simulation study. PhD thesis. Eidgenössische Technische Hochschule ETH, Zürich

  • Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074

    Article  Google Scholar 

  • Bugmann H (2001) A comparative analysis of forest dynamics in the Swiss Alps and the Colorado Front Range. For Ecol Manage 145:43–55

    Article  Google Scholar 

  • Bugmann H, Cramer W (1998) Improving the behaviour of forest gap models along drought gradients. For Ecol Manage 103:247–263

    Article  Google Scholar 

  • Bugmann H, Solomon AM (1995) The use of a European forest model in North America: a study of ecosystem response to climate gradients. J Biogeogr 22:477–484

    Article  Google Scholar 

  • Bugmann H, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecol Appl 10:95–114

    Google Scholar 

  • Bugmann H, Weisberg PJ (2003) Forest–ungulate interactions: monitoring, modeling and management. J Nat Conserv 10:193–202

    Article  Google Scholar 

  • Burger H (1947) Holz, Blattmenge und Zuwachs VIII. Die Eiche. Mitt Schweiz Anst forstl Versuchswes 25:211–279

    Google Scholar 

  • Burger H (1948) Holz, Blattmenge und Zuwachs IX. Die Föhre. Mitt Schweiz Anst forstl Versuchswes 25:435–493

    Google Scholar 

  • Burger H (1950a) Forstliche Versuchsflächen im schweizerischen Nationalpark. Mitt Schweiz Anst forstl Versuchswes 26:583–634

    Google Scholar 

  • Burger H (1950b) Holz, Blattmenge und Zuwachs X. Die Buche. Mitt Schweiz Anst forstl Versuchswes 26:419–468

    Google Scholar 

  • Burger H (1951) Holz, Blattmenge und Zuwachs XI. Die Tanne. Mitt Schweiz Anst forstl Versuchswes 27:247–286

    Google Scholar 

  • Burger H (1952) Holz, Blattmenge und Zuwachs XII Fichten im Plenterwald. Mitt Schweiz Anst forstl Versuchswes 28:109–156

    Google Scholar 

  • Burger H (1953) Holz, Blattmenge und Zuwachs XIII. Fichten im gleichaltrigen Hochwald. Mitt Schweiz Anst forstl Versuchswes 29:38–130

    Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420

    Google Scholar 

  • Commarmot B (1995) Internationaler Weisstannen-Herkunftsversuch: Entwicklung der Herkünfte bis zum Alter 12 auf der Versuchsfläche Bourrignon im Schweizer Jura. In: Eder W (ed) 7. IUFRO-Tannensymposium, Altensteig, pp 59–68

  • Diaci J, Kutnar L, Rupel M, Smoley I, Urbancic M, Kraigher H (2000) Interactions of ecological factors and natural regeneration in an altimontane Norway spruce (Picea abies (L.) Karst.) stand. Phyton 40:17–26

    Google Scholar 

  • Duc P, Brang P (2003) Die Verjüngungssituation im Gebirgswald des Schweizerischen Alpenraumes. BFW-Berichte 130:31–49

    Google Scholar 

  • Eiberle K (1975) Ergebnisse einer Simulation des Wildverbisses durch den Triebschnitt. Schweiz Z Forstwes 126:821–839

    Google Scholar 

  • Eiberle K (1989) Über den Einfluss des Wildverbisses auf die Mortalität von jungen Waldbäumen in der oberen Montanstufe. Schweiz Z Forstwes 140:1031–1042

    Google Scholar 

  • Eiberle K, Nigg H (1983) Über die Folgen des Wildverbisses an Fichte und Weisstanne in montaner Lage. Schweiz Z Forstwes 134:361–372

    Google Scholar 

  • Frehner M (2001) Gebirgswaldpflege—es kommt auf den Standort an. Schweiz Z Forstwes 152:169–172

    Google Scholar 

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit im Schutzwald und Erfolgskontrolle—Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. BUWAL, Bundesamt für Umwelt, Wald und Landschaft, Bern

  • Guler A (2004) Variabilität von Verjüngungsmerkmalen im Kontrollzaunprojekt des Kantons Graubünden. MSc Thesis. ETH Zürich, Zürich

  • Huth A, Ditzer T (2000) Simulation of the growth of a lowland dipterocarp rain forest with FORMIX3. Ecol Modell 134:1–25

    Article  CAS  Google Scholar 

  • Jorritsma ITM, Van Hees AFM, Mohren GMJ (1999) Forest development in relation to ungulate grazing: a modeling approach. For Ecol Manage 120:23–34

    Article  Google Scholar 

  • Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D, Solomon AM, Wyckoff P (2001) Tree mortality in gap models: application to climate change. Clim Change 51:509–540

    Article  Google Scholar 

  • Kindermann G, Hasenauer H (2003) Einfluss von Wildverbiss auf das Ankommen von Verjüngung. In: Kenk G (ed) Jahrestagung des Deutschen Verbandes Forstlicher Versuchsanstalten—Sektion Ertragskunde, Torgau, pp 46–53

  • Köhl M, Brassel P (2001) Zur Auswirkung der Hangneigungskorrektur auf Schätzwerte im Schweizerischen Landesforstinventar (LFI). Schweiz Z Forstwes 152:215–225

    Google Scholar 

  • Kupferschmid AD (2005) Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecol 179:247–268

    Article  Google Scholar 

  • Lindner M, Sievänen R, Pretzsch H (1997) Improving the simulation of stand structure in a forest gap model. For Ecol Manage 95:183–195

    Article  Google Scholar 

  • Mayer DG, Butler DG (1993) Statistical validation. Ecol Modell 68:21–32

    Article  Google Scholar 

  • Mayer H, Ott E (1991) Gebirgswaldbau–Schutzwaldpflege. Gustav Fischer, Stuttgart

    Google Scholar 

  • Mosandl R, El Kateb H (1988) Die Verjüngung gemischter Bergwälder—Praktische Konsequenzen aus zehnjähriger Untersuchungsarbeit. Forstw Cbl 107:2–13

    Google Scholar 

  • Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manage 88:93–98

    Article  Google Scholar 

  • Motta R (2003) Ungulate impact on rowan (Sorbus aucuparia) and Norway spruce (Picea abies) height structure in mountain forests in the eastern Italian Alps. For Ecol Manage 181:139–150

    Article  Google Scholar 

  • Odermatt O (1997) Wildschadensituations im Stotzigwald Gurtnellen. Phytosanitärer Beobachtungs- und Meldedienst PBMD. WSL, Birmensdorf

    Google Scholar 

  • Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder—Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Verlag Paul Haupt, Bern

    Google Scholar 

  • Parks CG, Bednar L, Tiedemann AR (1998) Browsing ungulates—an important consideration in dieback and mortality of Pacific yew (Taxus brevifolia) in a northeastern Oregon stand. Northwest Sci 72:190–197

    Google Scholar 

  • Pretzsch H (2001) Modellierung des Waldwachstums. Parey Buchverlag, Berlin

    Google Scholar 

  • Pretzsch H, Dursky J (2001) Evaluierung von Waldwachstumssimulatoren auf Baum- und Bestandesebene. Allg Forst- Jagdztg 172:146–150

    Google Scholar 

  • Price DT, Zimmermann NE, Van der Meer PJ, Lexer MJ, Leadly P, Jorritsma ITM, Schaber J, Clark DF, Lasch P, McNulty S, Wu J, Smith B (2001) Regeneration in gap models: priority issues for studying forest responses to climate change. Clim Change 51:475–508

    Article  Google Scholar 

  • Rammig A, Bebi P, Bugmann H, Fahse L (2006) Adapting a growth equation to model tree regeneration in mountain forests. Eur J For Res. DOI 10.1007/s10342-005-0088-0

  • Reimoser F, Gossow H (1996) Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For Ecol Manage 88:107–119

    Article  Google Scholar 

  • Risch AC, Heiri C, Bugmann H (2005) Simulating structural forest patterns with a forest gap model: a model evaluation. Ecol Modell 181:161–172

    Article  Google Scholar 

  • Rüegg D, Schwitter R (2002) Untersuchungen über die Entwicklung der Verjüngung und des Verbisses im Vivian-Sturmgebiet Pfäfers. Schweiz Z Forstwes 153:130–139

    Google Scholar 

  • Schönenberger W (2002) Post windthrow stand regeneration in Swiss mountain forests: the first ten years after the 1990 storm Vivian. For Snow Landsc Res 77:61–80

    Google Scholar 

  • Seagle SW, Liang SY (2001) Application of a forest gap model for prediction of browsing effects on riparian forest succession. Ecol Modell 144:213–229

    Article  Google Scholar 

  • Senn J, Suter W (2003) Ungulate browsing of silver fir (Abies alba) in the Swiss Alps: beliefs in search of supporting data. For Ecol Manage 181:151–164

    Article  Google Scholar 

  • Shao G, Bugmann H, Yan X (2001) A comparative analysis of the structure and behaviour of three gap models at sites in northeastern China. Clim Change 51:389–413

    Article  Google Scholar 

  • Shugart HH (1998) Terrestrial ecosystems in changing environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Thali U (1997) Waldbauprojekt Stotzigwald, Gurtnellen. Ingenieurbüro U. Thali, Göschenen

    Google Scholar 

  • Truninger K, Bucher S (1994) Untersuchungen zur Fichtenverjüngung in einem subalpinen Vogelbeervorwald. Semesterarbeit, ETH Zürich, Zürich

    Google Scholar 

  • Wasem U, Senn J (2000) Fehlende Weisstannenverjüngung: Hohe Schalenwildbestände können die Ursache sein. Wald und Holz 9:11–14

    Google Scholar 

  • Wehrli A, Schönenberger W, Brang P (2003) Long term development of protection forests: combining models of forest dynamics with models of natural hazards. ETFRN Newsl 38:20–24

    Google Scholar 

  • Wehrli A, Zingg A, Bugmann H, Huth A (2005) Using a forest patch model to predict the dynamics of stand structure in Swiss mountain forests. For Ecol Manage 205:149–167

    Article  Google Scholar 

  • Weisberg PJ, Bonavia F, Bugmann H (2005) Modeling the interacting effects of browsing and shading on mountain forest tree regeneration (Picea abies). Ecol Modell 185:213–230

    Article  Google Scholar 

  • Zeide B (1993) Analysis of growth equations. For Sci 39:594–616

    Google Scholar 

  • Zinggeler J, Schwyzer A, Duc P (1999) Waldverjüngung. In: Brassel P, Brändli UB (eds) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Haupt, Bern

    Google Scholar 

Download references

Acknowledgements

This study was carried out within the framework of the National Research Programme 48 (Landscapes and Habitats of the Alps) and funded by the Swiss National Science Foundation (grant 4048-064409) and the Swiss Forest Agency. We would like to express our gratitude to the SMA (MeteoSwiss) for providing us with the long-term weather records and to Brigitte Commarmot for providing us with data for model parameterization. We wish to thank Andrea Walther and Markus Tschopp for their assistance in the field and Urs Thali for providing us with additional data on the Stotzigwald. We thank Heike Lischke for her help with programming. Two anonymous reviewers significantly improved the focus and quality of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wehrli.

Additional information

Communicated by Hans Pretzsch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrli, A., Weisberg, P.J., Schönenberger, W. et al. Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests. Eur J Forest Res 126, 131–145 (2007). https://doi.org/10.1007/s10342-006-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-006-0142-6

Keywords

Navigation