Skip to main content
Log in

Acaricides in modern management of plant-feeding mites

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

This review focuses on biological profiles of contemporary acaricides, acaricide resistance, and other up-to-date issues related to acaricide use in management of plant-feeding mites. Over the last two decades a considerable number of synthetic acaricides emerged on the global market, most of which exert their effects acting on respiration targets. Among them, the most important are inhibitors of mitochondrial electron transport at complex I (METI-acaricides). Discovery of tetronic acid derivatives (spirodiclofen and spiromesifen) introduced a completely new mode of action: lipid synthesis inhibition. Acaricide resistance in spider mites has become a global phenomenon. The resistance is predominantly caused by a less sensitive target site (target site resistance) and enhanced detoxification (metabolic resistance). The major emphasis in current research on acaricide resistance mechanisms deals with elucidation of their molecular basis. Point mutations resulting in structural changes of target site and leading to its reduced sensitivity, have recently been associated with resistance in Tetranychus urticae Koch and other spider mites. The only sustainable, long-term perspective for acaricide use is their implementation in multitactic integrated pest management programs, in which acaricides are applied highly rationally and in interaction with other control tactics. Considering that the key recommendation for effective acaricide resistance management is reduction of the selection for resistance by alternations, sequences, rotations, and mixtures of compounds with different modes of action, the main challenge that acaricide use is facing is the need for new active substances with novel target sites. Besides implementation of advanced technologies for screening and design of new synthetic compounds, wider use of microbial and plant products with acaricidal activity could also contribute increased biochemical diversity of acaricides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnello A, Reissig WH, Harris T (1994) Management of summer populations of European red mite (Acari: Tetranychidae) on apple with horticultural oil. J Econ Entomol 87:148–161

    Google Scholar 

  • Amano H, Haseeb M (2001) Recently-proposed methods and concepts of testing the effects of pesticides on the beneficial mite and insect species: study limitations and implications in IPM. Appl Entomol Zool 36:1–11

    Article  Google Scholar 

  • Ay R, Gűrkan MO (2005) Resistance to bifenthrin and resistance mechanisms of different strains of the twospotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica 33:237–244

    Article  CAS  Google Scholar 

  • Ay R, Kara FE (2011) Toxicity, inheritance and biochemistry of clofentezine resistance in Tetranychus urticae. Insect Sci 18:503–511

    Article  CAS  Google Scholar 

  • Badawy MEI, El-Arami SAA, Abdelgaleil SAM (2010) Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol 52:261–274

    Article  PubMed  CAS  Google Scholar 

  • Bakker FM, Jacas JA (1995) Pesticides and phytoseiid mites—strategies for risk assessment. Ecotoxicol Environ Saf 32:58–67

    Article  PubMed  CAS  Google Scholar 

  • Beers EH, Martinez-Rocha L, Talley RR, Dunley JE (2009) Lethal, sublethal, and behavioral effects of sulfur-containing products in bioassays of three species of orchard mites. J Econ Entomol 102:324–335

    Article  PubMed  CAS  Google Scholar 

  • Blümel S, Baker F, Grove A (1993) Evaluation of different methods to assess the side-effects of pesticides on Phytoseiulus persimilis A.-H. Exp Appl Acarol 17:161–169

    Article  Google Scholar 

  • Blümel S, Matthews GA, Grinstein A, Elad Y (1999) Pesticides in IPM: selectivity, side-effects, application and resistance problems. In: Albajes R, Gullino MA, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Dordrecht, pp 150–167

    Google Scholar 

  • Bonafos R, Auger P, Guichou S, Kreiter S (2008) Suitability of two laboratory testing methods to evaluate side effects of pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Pest Manag Sci 64:178–184

    Article  PubMed  CAS  Google Scholar 

  • Bretschneider T, Nauen R (2007) Mite growth inhibitors (clofentezine, hexythiazox, etoxazole). In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 824–840

  • Bretschneider T, Fisher R, Nauen R (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inihbitors). In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 909–925

  • Brück E, Elbert A, Fischer R, Krueger S, Kühnhold J, Klueken AM, Nauen R, Niebes JF, Reckman U, Schnorbach JJ, Steffens R, van Waetermeulen X (2009) Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844

    Article  Google Scholar 

  • Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43:1–16

    Article  PubMed  CAS  Google Scholar 

  • Cating RA, Hoy MA, Palmateer AJ (2010) Silwet L-77 improves the efficacy of horticultural oils for control of Boisduval scale Diaspis boisduvalii (Hemiptera: Diaspididae) and the flat mite Tenuipalpus pacificus (Arachnida: Acari: Tenuipalpidae) on orchids. Florida Entomol 93:100–106

    Article  Google Scholar 

  • Chai BS, Liu CL, Li HC, Zhang H, Liu SW, Huang G, Chang JB (2011) The discovery of SYP-10913 and SYP-11277: novel strobilurin acaricides. Pest Manag Sci 67:1141–1146

    CAS  Google Scholar 

  • Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicum esculentum. Biocontrol Sci Technol 15:37–54

    Article  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366:1987–1998

    Article  Google Scholar 

  • Childers CC (2002) Practical use of horticultural mineral oils in integrated pest and disease management programs and their impact on natural enemies. In: Beattie A, Watson D, Stevens M, Rae D, Spooner-Hart R (eds) Spray oils beyond 2000—Sustainable pest and disease management. University of Western Sidney, Sidney, Australia, pp 332–348

    Google Scholar 

  • Childers CC, Easterbrook MA, Solomon MG (1996) Chemical control of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 695–726

    Chapter  Google Scholar 

  • Choi WI, Lee SG, Park HM, Ahn YJ (2004) Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). J Econ Entomol 97:553–558

    Article  PubMed  CAS  Google Scholar 

  • Chueca P, Garcera C, Molto E, Jacas JA, Urbaneja A, Pina T (2010) Spray deposition and efficacy of four petroleum-derived oils used against Tetranychus urticae. J Econ Entomol 103:386–393

    Article  PubMed  Google Scholar 

  • Cloyd RA, Galle CL, Keith SR, Kalscheur NA, Kemp KE (2009) Effect of commercially available plant-derived essential oil products on arthropod pests. J Econ Entomol 102:1567–1579

    Article  PubMed  CAS  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents—a review. Pest Manag Sci 63:524–554

    Article  PubMed  CAS  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Costello MJ (2007) Impact of sulfur on density of Tetranychus pacificus (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae) in a central California vineyard. Exp Appl Acarol 42:197–208

    Article  PubMed  CAS  Google Scholar 

  • Cranham JE, Helle W (1985) Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol. 1B. Elsevier, Amsterdam, pp 405-421

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and myco-acaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110

    Article  PubMed  CAS  Google Scholar 

  • Dekeyser MA (2007) Neuroactive miticides—bifenazate. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 1103–1110

    Google Scholar 

  • Dekeyser MA, Downer RGH (1994) Biochemical and physiological targets for miticides. Pestic Sci 40:85–101

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  PubMed  CAS  Google Scholar 

  • Duso C, Malagnini V, Pozzebon A, Buzzetti FM, Tirello P (2008) A method to access the effects of pesticides on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in the laboratory. Biocontrol Sci Technol 18:1027–1040

    Article  Google Scholar 

  • Ehrenfreund J (2007) Inhibitors of oxidative phosphorylation. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 867–879

    Google Scholar 

  • Elbert A, Nauen R, McCaffery A (2007) IRAC, Insecticide resistance and mode of action classification of insecticides. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. WILEY-VCH GmbH & Co. KGaA, Weinheim, pp 753–771

    Chapter  Google Scholar 

  • EPA (2011a) Highlights of the Food Quality Protection Act. http://epa.gov/pesticides/regulating/laws/fqpa/fqpahigh.htm. Accessed 21 Nov 2011

  • EPA (2011b) Reduced risk and organophosphate alternative decisions for conventional pesticides (updated 9/7/10). www.epa.gov/opprd001/workplan/completionsportrait.pdf. Accessed 21 Nov 2011

  • EU (2008) Comission Regulation (EC) No 889/2008. Official Journal of the European Union, 51, L 250

  • EU (2009) Regulation (EC) No. 1107/2009 of the European Parliament and of the Council of 21 October 2009. Official Journal of the European Union L 309

  • EU (2011) EU Pesticides Database: Active substances http://ec.europa.eu/sanco_pesticides/public/index.cfm. Accessed 21 Nov 2011

  • Gatarayiha MC, Laing MD, Miller RM (2011) Field evaluation of Beauveria bassiana efficacy for the control of Tetranychus urticae Koch (Acari: Tetranychidae). J Appl Entomol 135:582–592

    Article  Google Scholar 

  • Grosscurt AC (1993) Factors influencing the acaricidal activity of flucycloxuron. Entomol Exp Appl 69:201–208

    Article  CAS  Google Scholar 

  • Han J, Choi BR, Lee SG, Kim SI, Ahn YJ (2010) Toxicity of plant essential oils to acaricide-susceptible and -resistant Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). J Econ Entomol 103:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Hanna R, Zalom FG, Wilson LT, Leavitt GM (1997) Sulfur can suppress mite predators in vineyards. Calif Agric 51:19–21

    Article  Google Scholar 

  • Hassan SA (ed) (1992) Guidelines for testing the effects of pesticides on beneficial organisms. IOBC/WPRS Bulletin 15:1–186

  • Hoy MA (2011) Agricultural acarology—introduction to integrated mite management. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Huffaker CB, van de Vrie M, McMurtry JA (1969) The ecology of tetranychid mites and their natural control. Annu Rev Entomol 14:125–174

    Article  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • James DG, Prischmann D (2010) The impact of sulfur on biological control of spider mites in Washington State vineyards and hop yards. In: Sabelis MW, Bruin J (eds) Trends in Acarology, Proceedings of the 12th International Congress, Springer, Dordrecht, pp 477–482

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  • Khajehali J, van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, Tirry L, Vontas J, Tsagkarakou A (2010) Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manag Sci 66:220–228

    PubMed  CAS  Google Scholar 

  • Khajehali J, van Nieuwenhuyse P, Demaeght P, Tirry L, van Leeuwen T (2011) Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands. Pest Manag Sci 67:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Park HM, Cho JR, Ahn YJ (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99:954–958

    Article  PubMed  CAS  Google Scholar 

  • Knowles CO (1997) Mechamisms of resistance to acaricides. In: Sjut V, Butters JA (eds) Molecular mechanisms of resistance to agrochemicals. Springer, Berlin, pp 58–78

    Google Scholar 

  • Kramer T, Nauen R (2011) Monitoring of spirodiclofen susceptibility in field populations of European red mites, Panonychus ulmi (Koch) (Acari: Tetranychidae), and the cross-resistance pattern of a laboratory-selected strain. Pest Manag Sci 67:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D, Armes N (2007) Inhibitors of oxidative phosphorylation via disruption of the proton gradient. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH GmbH & Co. KGaA, Weinheim, pp 879–885

    Google Scholar 

  • Kwon DH, Clark JM, Lee SH (2010a) Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae. Pestic Bioochem Physiol 97:93–100

    Article  CAS  Google Scholar 

  • Kwon DH, Im JS, Ahn JJ, Lee JH, Clark JM, Lee SH (2010b) Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pestic Biochem Physiol 96:36–42

    Article  CAS  Google Scholar 

  • Kwon DH, Yoon KS, Clark JM, Lee SH (2010c) A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae. Insect Mol Biol 19:583–591

    Article  PubMed  CAS  Google Scholar 

  • Lim EG, Roh HS, Coudron TA, Park CG (2011) Temperature-dependent fumigant activity of essential oils against twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 104:414–419

    Article  PubMed  CAS  Google Scholar 

  • Maniania NK, Bugeme DM, Wekesa VW, Delalibera I Jr, Knapp M (2008) Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Exp Appl Acarol 46:259–274

    Article  PubMed  Google Scholar 

  • Mansour FA, Ascher KRS, Abo-Moch F (1997) Effects of Neemgard on phytophagous and predacious mites and on spiders. Phytoparasitica 25:333–336

    Article  Google Scholar 

  • Marcic D (2003) The effects of clofentezine on life-table parameters in two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 30:249–263

    Article  PubMed  CAS  Google Scholar 

  • Marcic D (2007) Sublethal effects of spirodiclofen on life history and life-table parameters of two-spotted spider mite (Tetranychus urticae). Exp Appl Acarol 42:121–129

    Article  PubMed  Google Scholar 

  • Marcic D, Peric P, Prijovic M, Ogurlic I (2009) Field and greenhouse evaluation of rapeseed spray oil against spider mites (Acari: Tetranychidae), green peach aphid (Homoptera: Aphididae) and pear psylla (Hemiptera: Psyllidae) in Serbia. Bull Insectol 62:159–167

    Google Scholar 

  • Marcic D, Ogurlic I, Mutavdzic S, Peric P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50:255–267

    Article  PubMed  Google Scholar 

  • Marcic D, Mutavdzic S, Medjo I, Prijovic M, Peric P (2011a) Field and greenhouse evaluation of spirodiclofen against Panonychus ulmi and Tetranychus urticae (Acari: Tetranychidae) in Serbia. In: Moraes GJ de, Proctor H (eds) Acarology XIII, Proceedings of the International Congress, Zoosymposia 6:93–98

  • Marcic D, Petronijevic S, Drobnjakovic T, Prijovic M, Peric P, Milenkovic S (2012) The effects of spirotetramat on life history traits and population growth of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 56:113–122

    Article  PubMed  Google Scholar 

  • Martinez-Villar E, Saenz-de-Cabezon FJ, Moreno-Grijalba F, Marco V, Perez-Moreno I (2005) Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 35:215–222

    Article  PubMed  CAS  Google Scholar 

  • Miresmailli S, Isman MB (2006) Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J Econ Entomol 99:2015–2023

    Article  PubMed  Google Scholar 

  • Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62:366–371

    Article  PubMed  CAS  Google Scholar 

  • Marcic D. Mutavdzic S, Medjo I, Prijovic M, Peric P (2011b) Spirotetramat toxicity to immatures and sublethal effects on fecundity of female adults of Tetranychus urticae Koch. In: Moraes GJ de, Proctor H (eds) Acarology XIII, Proceedings of the International Congress, Zoosymposia 6:99–103

  • Najar-Rodriguez AJ, Lavidis NA, Mensah RK, Choy PT, Walter GH (2008) The toxicological effects of petroleum spray oils on insects—evidence for an alternative mode of action and possible new control options. Food Chem Toxicol 46:3003–3014

    Article  PubMed  CAS  Google Scholar 

  • Nauen R (2005) Spirodiclofen—mode of action and resistance risk assessment in tetranychid mite species. J Pestic Sci 30:272–274

    CAS  Google Scholar 

  • Nauen R, Smagghe G (2006) Mode of action of etoxazole. Pest Manag Sci 62:379–382

    Article  PubMed  CAS  Google Scholar 

  • Nicetic O, Watson DM, Beattie GAC, Meats A, Zheng J (2001) Integrated pest management of two-spotted mite Tetranychus urticae on greenhouse roses using petroleum spray oil and the predatory mite Phytoseiulus persimilis. Exp Appl Acarol 25:37–53

    Article  PubMed  CAS  Google Scholar 

  • Niu JZ, Liu GY, Dou W, Wang JJ (2011) Susceptibility and activity of glutathione S-transferases in nine field populations of Panonychus citri (Acari: Tetranychidae) to pyridaben and azocyclotin. Fla Entomol 94:321–329

    Article  CAS  Google Scholar 

  • Nyoni BN, Gorman K, Mzilahowa T, Williamson MS, Navajas M, Field LM, Bass C (2011) Pyrethroid resistance in the tomato red spider mite, Tetranychus evansi, is associated with mutation of the para-type sodium channel. Pest Manag Sci 67:891–897

    Article  PubMed  CAS  Google Scholar 

  • Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, Takeda M (2007) Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol 43:181–197

    Article  PubMed  CAS  Google Scholar 

  • Pitterna T (2007) Chloride channel activators/new natural products (avermectins and milbemycins). In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 1069–1088

    Google Scholar 

  • Pree DJ, Whitty KJ, van Driel L (2005) Baseline susceptibility and cross resistance of some new acaricides in the European red mite, Panonychus ulmi. Exp Appl Acarol 37:165–171

    Article  PubMed  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  PubMed  CAS  Google Scholar 

  • Sparks TC, DeAmicis CV (2007) Inhibitors of mitochondrial electron transport—acaricides and insecticides. In: Krämer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 885–908

    Google Scholar 

  • Stadler T, Buteler M (2009) Modes of entry of petroleum distilled spray-oils inot insects: a review. Bull Insectol 62:169–177

    Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  PubMed  CAS  Google Scholar 

  • Stark JD, Sugayama RL, Kovaleski A (2007) Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents. Biocontrol 52:365–374

    Article  Google Scholar 

  • Sterk G, Creemers P, Merck K (1994) Testing the side effects of pesticides on the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) in field trials. IOBC/WPRS Bull 17:27–40

    Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583

    Article  PubMed  CAS  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 72:111–121

    Article  CAS  Google Scholar 

  • Stumpf N, Zebitz CPW, Kraus W, Moores G, Nauen R (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 69:131–142

    Article  CAS  Google Scholar 

  • Tomlin C (ed) (2009) The pesticide manual, 15th edn. BCPC, Farnham

    Google Scholar 

  • Tsagkarakou A, Navajas M, Cuany A, Chevillon C, Pasteur N (2002) Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece. Insect Biochem Mol Biol 32:417–424

    Article  PubMed  CAS  Google Scholar 

  • Tsagkarakou A, van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson MS, Tirry L, Vontas J (2009) Identification of pyrethroid resistance mutations in the para sodium channel of the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Mol Biol 18:583–593

    Article  PubMed  CAS  Google Scholar 

  • Tsolakis H, Ragusa S (2008) Effects of mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis. Ecotoxicol Environ Saf 70:276–282

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen T, Tirry L (2007) Esterase-mediated bifenthrin resistance in a multi-resistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manag Sci 63:150–156

    Article  PubMed  Google Scholar 

  • van Leeuwen T, van Pottelberge S, Tirry L (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag Sci 61:499–507

    Article  PubMed  Google Scholar 

  • van Leeuwen T, van Pottelberge S, Tirry L (2006) Biochemical analysis of chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manag Sci 62:425–433

    Article  PubMed  Google Scholar 

  • van Leeuwen T, van Pottelberge S, Tirry L (2007) Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag Sci 63:1172–1177

    Article  PubMed  Google Scholar 

  • van Leeuwen T, Vanholme B, van Pottelberge S, van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980–5985

    Article  PubMed  Google Scholar 

  • van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L (2009) Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 347–393

    Chapter  Google Scholar 

  • van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010a) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572

    Article  PubMed  Google Scholar 

  • van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010b) The control of eriophyoid mites: state of the art and future challenges. Exp Appl Acarol 51:205–224

    Article  PubMed  Google Scholar 

  • van Leeuwen T, van Nieuwenhuyse P, Vanholme B, Dermauw W, Nauen R, Tirry L (2011) Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Insect Mol Biol 20:135–140

    Article  PubMed  Google Scholar 

  • van Nieuwenhuyse P, van Leeuwen T, Khajehali J, Vanholme B, Tirry L (2009) Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag Sci 65:404–412

    Article  PubMed  Google Scholar 

  • van Pottelberge S, Khajehali J, van Leeuwen T, Tirry L (2009a) Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Exp App Acarol 47:301–309

    Article  Google Scholar 

  • van Pottelberge S, van Leeuwen T, Khajehali J, Tirry L (2009b) Genrtic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag Sci 65:358–366

    Article  PubMed  Google Scholar 

  • van Pottelberge S, van Leeuwen T, Nauen R, Tirry L (2009c) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

    Article  PubMed  Google Scholar 

  • Venzon M, Rosado MC, Molina-Rugama AJ, Duarte VS, Dias R, Pallini A (2008) Acaricidal efficacy of neem against Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Crop Prot 27:869–872

    Article  CAS  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Global pesticide resistance in arthropods. CAB International, Wallingford

    Book  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM, Duynslager L (2011) Arthropod Pesticide Resistance Database. www.pesticideresistance.com (December 22, 2011)

  • Ya-ning F, Shu Z, Wei S, Ming L, Wen-cai L, Lin H (2011) The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance. Pest Manag Sci 67:904–912

    Article  Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses—identification, biology and control. CAB International, Wallingford

    Book  Google Scholar 

Download references

Acknowledgments

This study was carried out as a part of the Project TR 31043 financially supported by the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Marcic.

Additional information

Communicated by N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcic, D. Acaricides in modern management of plant-feeding mites. J Pest Sci 85, 395–408 (2012). https://doi.org/10.1007/s10340-012-0442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-012-0442-1

Keywords

Navigation