Skip to main content
Log in

An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components (MMCs)

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components (MMCs). The skin and stiffeners are considered as panels with different bending stiffnesses, with the use of equivalent stiffness method. Then the location and geometric properties of composite stiffeners are determined by several MMCs to perform topology optimization, which can greatly simplify the finite element model. With the objective of maximizing structural stiffness, several typical cases with various loading and boundary conditions are selected as numerical examples to demonstrate the proposed method. The numerical examples illustrate that the proposed method can provide clear stiffener layout and explicit geometry information, which is not limited within the framework of parameter and size optimization. The mechanical properties of composite stiffened panels can be fully enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kong C, Lee H, Park H. Design and manufacturing of automobile hood using natural composite structure. Compos Part B Eng. 2016;91:18–26.

    Article  Google Scholar 

  2. Kong L, Zuo XB, Zhu SP, Li ZP, Shi JJ, Li L, Feng ZH, Zhang DH, Deng DY, Yu JJ. Novel carbon-poly(silacetylene) composites as advanced thermal protection material in aerospace applications. Compos Sci Technol. 2018;162:163–9.

    Article  Google Scholar 

  3. Zhu D, Shi HY, Fang H, Liu WQ, Qi YJ, Bai Y. Fiber reinforced composites sandwich panels with web reinforced wood core for building floor applications. Compos Part B Eng. 2018;150:196–211.

    Article  Google Scholar 

  4. Sun Z, Hu XZ, Sun SY, Chen HR. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement. Compos Sci Technol. 2013;77:14–21.

    Article  Google Scholar 

  5. Ahmadi H, Rahimi G. Analytical and experimental investigation of transverse loading on grid stiffened composite panels. Compos Part B Eng. 2019;159:184–98.

    Article  Google Scholar 

  6. Ouyang T, Sun W, Guan ZD, Tan RM, Li ZS. Experimental study on delamination growth of stiffened composite panels in compression after impact. Compos Struct. 2018;206:791–800.

    Article  Google Scholar 

  7. Lanzi L, Giavotto V. Post-buckling optimization of composite stiffened panels: computations and experiments. Compos Struct. 2006;73:208–20.

    Article  Google Scholar 

  8. Montemurro M, Vincenti A, Vannucci P. A two-level procedure for the global optimum design of composite modular structures—application to the design of an aircraft wing. Part 2: numerical aspects and examples. J Optim Theory Appl. 2012;155(1):24–53.

    Article  MathSciNet  Google Scholar 

  9. Fu X, Ricci S, Bisagni C. Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms. Compos Struct. 2015;134:708–15.

    Article  Google Scholar 

  10. Wang W, Guo S, Chang N, Yang W. Optimum buckling design of composite stiffened panels using ant colony algorithm. Compos Struct. 2010;92:712–9.

    Article  Google Scholar 

  11. Irisarri FX, Laurin F, Leroy FH, Maire JF. Computational strategy for multiobjective optimization of composite stiffened panels. Compos Struct. 2011;93:1158–67.

    Article  Google Scholar 

  12. Badalló P, Trias D, Marín L, Mayugo JA. A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads. Compos Part B Eng. 2013;47:130–6.

    Article  Google Scholar 

  13. Todoroki A, Sekishiro M. Stacking sequence optimization to maximize the buckling load of blade-stiffened panels with strength constraints using the iterative fractal branch and bound method. Compos Part B Eng. 2008;39:842–50.

    Article  Google Scholar 

  14. Rikards R, Abramovich H, Auzins J, Korjakins A, Ozolinsh O, Kalnins K, Green T. Surrogate models for optimum design of stiffened composite shells. Compos Struct. 2004;63:243–51.

    Article  Google Scholar 

  15. Kaufmann M, Zenkert D, Mattei C. Cost optimization of composite aircraft structures including variable laminate qualities. Compos Sci Technol. 2008;68:2748–54.

    Article  Google Scholar 

  16. Kaufmann M, Zenkert D, Wennhage P. Integrated cost/weight optimization of aircraft structures. Struct Multidiscip Optim. 2010;41:325–34.

    Article  Google Scholar 

  17. Marín L, Trias D, Badalló P, Rus G, Mayugo JA. Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms. Compos Struct. 2012;94:3321–6.

    Article  Google Scholar 

  18. Wang D, Abdalla MM, Wang ZP, Su ZC. Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput Methods Appl Mech Eng. 2019;344:1021–50.

    Article  MathSciNet  Google Scholar 

  19. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA. 2010;107:13222–7.

    Article  Google Scholar 

  20. Qin Z, Compton BG, lewis JA, Buehler MJ. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat Commun. 2015;6:7038.

    Article  Google Scholar 

  21. Sun Z, Li D, Zhang WS, Shi SS, Guo X. Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets. Compos Sci Technol. 2017;142:79–90.

    Article  Google Scholar 

  22. Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim. 2013;49:1–38.

    Article  MathSciNet  Google Scholar 

  23. An HC, Chen SY, Huang H. Multi-objective optimization of a composite stiffened panel for hybrid design of stiffener layout and laminate stacking sequence. Struct Multidiscip Optim. 2018;57:1411–26.

    Article  MathSciNet  Google Scholar 

  24. Rais-Rohani M, Lokits J. Reinforcement layout and sizing optimization of composite submarine sail structures. Struct Multidiscip Optim. 2007;34:75–90.

    Article  Google Scholar 

  25. Niemann S, Kolesnikov B, Lohse-Busch H, Hüehne C, Querin OM, Toropov VV, Liu D. The use of topology optimisation in the conceptual design of next generation lattice composite aircraft fuselage structures. Aeronaut J. 2013;117:1139–54.

    Article  Google Scholar 

  26. Guo X, Zhang WS, Zhong WL. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. ASME J Appl Mech. 2014;81(8):081009.

    Article  Google Scholar 

  27. Shi SS, Sun Z, Ren MF, Chen HR, Hu XZ. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures. Compos Part B Eng. 2013;45:888–96.

    Article  Google Scholar 

  28. Sun Z, Cui TC, Zhu YC, Zhang WS, Shi SS, Tang S, Du ZL, Liu C, Cui RH, Chen HJ, Guo X. The mechanical principles behind the golden ratio distribution of veins in plant leaves. Sci Rep. 2018;8:13859.

    Article  Google Scholar 

  29. Zhang WS, Yuan J, Zhang J, Zhang J, Guo X. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim. 2016;53:1243–60.

    Article  MathSciNet  Google Scholar 

  30. Zhang WS, Yang WY, Zhou JH, Li D, Guo X. Structural topology optimization through explicit boundary evolution. ASME J Appl Mech. 2017;84(1):011011.

    Article  Google Scholar 

  31. Guo X, Zhang WS, Zhang J, Yuan J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng. 2016;310:711–48.

    Article  MathSciNet  Google Scholar 

  32. Zhang WS, Zhang J, Guo X. Lagrangian description based topology optimization—a revival of shape optimization. ASME J Appl Mech. 2016;83(4):041010.

    Article  Google Scholar 

  33. Ding XH, Yamazaki K. Adaptive growth technique of stiffener layout pattern for plate and shell structures to achieve minimum compliance. Eng Optim. 2005;37(3):259–76.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key Research and Development Plan (2016YFB0201601), the Foundation for Innovative Research Groups of the National Natural Science Foundation (11821202), the National Natural Science Foundation (11872138, 11702048, 11732004 and 11772076), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), Liaoning Natural Science Foundation Guidance Plan (20170520293) and 111 Project (B14013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Sun or Xu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Cui, R., Cui, T. et al. An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components (MMCs). Acta Mech. Solida Sin. 33, 650–662 (2020). https://doi.org/10.1007/s10338-020-00161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00161-4

Keywords

Navigation