Skip to main content
Log in

The visual fields of the Harpy Eagle (Harpia harpyja)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We describe for the first time the visual fields of the largest tropical raptor, the Harpy Eagle (Harpia harpyja), a powerful keystone species that hunts almost exclusively in forested habitats. They have the largest blind area described to date of any diurnal raptor species, and relatively narrow binocular fields, which together may help explain the way they interact with their prey in the visually complex environments they inhabit. As a top predator, their spatial visual sampling is likely driven more by foraging needs than predator detection, and they thus serve as an excellent study species for understanding the tradeoffs between visually guided foraging and anti-predatory behaviors. Further studies on the position and the projection of retinal foveae, visual acuity, and color vision will improve our understanding of their visual capabilities and could play important roles in conservation of a vulnerable Neotropical species.

Zusammenfassung

Das Gesichtsfeld der Harpyie ( Harpia harpyja )

Wir beschreiben hier zum ersten Mal das Gesichtsfeld des größten tropischen Greifvogels, der Harpyie (Harpia harpyja), einer wichtigen Schlüsselart, die fast ausschließlich in bewaldeten Lebensräumen jagt. Die Tiere haben den größten bisher beschriebenen blinden Bereich aller tagaktiven Greifvogelarten und relativ schmale Sehfelder, was erklären könnte, auf welche Weise sie mit ihrer Beute in der visuell komplexen Umgebung, in der diese lebt, interagieren. Als ausgeprägter Räuber wird ihr räumliches visuelles Erfassen der Umgebung wahrscheinlich eher von der Nahrungssuche als durch das Aufspüren von Raubtieren bestimmt, und sie sind daher als Art hervorragend geeignet für Untersuchungen zum Verständnis der Nutzen-/Kosten-Analyse von visuell gesteuerter Nahrungssuche versus Anti-Raubtier-Verhalten. Weitere Studien zur Position und Projektion der Netzhautfurchen, der Sehschärfe und des Farbsehens können unser Verständnis der visuellen Fähigkeiten der Harpyie vertiefen und eine wichtige Rolle bei der Erhaltung einer gefährdeten neotropischen Art spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Data and code used for some figures are available at the following public repository: https://osf.io/xk5qn/.

Code availability

Not applicable.

References

  • Aguiar-Silva FH (2014) Food habits of the Harpy Eagle, a top predator from the Amazonian rainforest canopy. J Rap Res 48:24–35

    Article  Google Scholar 

  • Bierregaard RO (1994) Harpy Eagle. In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of birds of the world, vol 2. Lynx Edicions, Barcelona, Spain, p 191

    Google Scholar 

  • Birdlife International (2022) Harpia harpyja (American Harpy Eagle, Harpy Eagle). Available at http://datazone.birdlife.org/species/factsheet/22695998. Accessed 4 Apr 2022.

  • Brown L, Amadon D (1968) Eagle, hawks and falcons of the world. McGraw-Hill, New York, New York

    Google Scholar 

  • Cavalcante T, Tuyama CA, Mourthe I (2019) Insights into the development of a juvenile harpy eagle’s hunting skills. Acta Amazon 49:114–117

    Article  Google Scholar 

  • Changizi MA, Shimojo S (2008) “X-ray vision” and the evolution of forward-facing eyes. J Theor Biol 254:756–767

    Article  PubMed  Google Scholar 

  • Christie DA (2001) Raptors of the world. Houghton Mifflin Harcourt, pp 717–719

    Google Scholar 

  • Dunning JB (2007) CRC handbook of avian body masses, 2nd edn. CRC Press, Chicago/Turabian, Boca Raton

    Book  Google Scholar 

  • Fernández-Juricic E, Gall MD, Dolan T, Tisdale V, Martin GR (2008) The visual fields of two ground-foraging birds, house finches and house sparrows, allow for simultaneous foraging and anti-predator vigilance. Ibis 150:779–787

    Article  Google Scholar 

  • Fox R, Lehmkuhle SW, Bush RC (1977) Stereopsis in the falcon. Science 197:79–81

    Article  CAS  PubMed  Google Scholar 

  • Guillemain M, Martin GR, Fritz H (2002) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Func Ecol 16:522–529

    Article  Google Scholar 

  • Heesy CP (2009) Seeing in stereo: the ecology and evolution of primate binocular vision and stereopsis. Evol Anthropol 18:21–35

    Article  Google Scholar 

  • Izor RJ (1985) Sloths and other mammalian prey of the Harpy Eagle. In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths, and vermilinguas. Smithsonian Institution, Washington, D.C., pp 343–346

    Google Scholar 

  • Jones MP, Pierce KE Jr, Ward D (2007) Avian vision: a review of form and function with special consideration to birds of prey. J Exotic Pet Med 16:69–87

    Article  Google Scholar 

  • Kane S, Zamani M (2014) Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. J Exp Biol 217:225–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin GR (1984) The visual fields of the tawny owl, Strix aluco. Vision Res 24:1739–1751

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (2007) Visual fields and their functions in birds. J Ornithol 148:S547–S562

    Article  Google Scholar 

  • Martin GR (2009) What is binocular vision for? A birds’ eye view. J vis 9:1–19

    Article  Google Scholar 

  • Martin GR (2014) The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds. Phil Trans R Soc B Biol Sci 369:20130040

    Article  Google Scholar 

  • Martin GR (2017) What drives bird vision? Bill control and predator detection overshadow flight. Front Neurosci 11:619

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin GR, Katzir G (1999) Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds. Brain Behav Evol 2:55–66

    Article  Google Scholar 

  • Martin GR, Katzir G (2000) Sun shades and eye size in birds. Brain Behav Evol 56:340–344

    Article  CAS  PubMed  Google Scholar 

  • Martin GR, Portugal SJ, Murn CP (2012) Visual fields, foraging and collision vulnerability in Gyps vultures. Ibis 154:626–631

    Article  Google Scholar 

  • Matola S (2006) The Harpy Eagle restored to former Central American range. Oryx 40:13

    Google Scholar 

  • Mendelsohn JM, Kemp AC, Biggs HC, Biggs R, Brown CJ (1988) Wing areas, wing loading and wing spans of 66 species of African raptors. Ostrich 60:35–42

    Article  Google Scholar 

  • Miranda EBPd, Campbell-Thompson E, Muela A, Hernán-Vargas F (2017) Sex and breeding status affect prey composition of Harpy Eagles Harpia harpyja. J Ornithol 159:141–150

    Article  Google Scholar 

  • Miranda EBPd, Kenup CF, Campbell-Thompson E, Vargas FH, Muela A, Watson R, Peres CA, Downs CT (2020) High moon brightness and low ambient temperatures affect sloth predation by harpy eagles. Peer J 8:e9756

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitkus M, Potier S, Martin GR, Duriez O, Kelber A (2018) Raptor vision. Oxford research encyclopedia of neuroscience. Oxford University Press, Oxford, UK, pp 5–6

    Google Scholar 

  • Moore BA, Montiani-Ferreira F (2022) Ophthalmology of Accipitrimorphae, Strigidae, and Falconidae: eagles, hawks, vultures, owls, falcons, and their relatives. In: Montiani-Ferreira F, Moore BA, Ben-Shlomo G (eds) Wild and exotic animal ophthalmology, volume 1: invertebrates, fishes, amphibians, reptiles, and birds. Springer Nature, Switzerland, pp 429–504

    Chapter  Google Scholar 

  • Moore BA, Doppler M, Young JE, Fernández-Juricic E (2013) Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J Comp Physiol A 199:263–277

    Article  Google Scholar 

  • Moore BA, Pita D, Tyrrell LP, Fernández-Juricic E (2015) Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity. J Exp Biol 218:1347–1358

    PubMed  Google Scholar 

  • Moore BA, Tyrrell LP, Kamilar JM, Collin S, Dominy NJ, Hall MI, Heesy CP, Lisney TJ, Loew ER, Moritz GL, Nava SS, Warrant E, Shaw K, Fernandez-Juricic E (2017a) Structure and functions of regional specializations in vertebrate retinas. In: Kaas JH, Striedter G (eds) Evolution of nervous systems, 2nd edn. Elsevier, Oxford, UK, pp 351–372

    Chapter  Google Scholar 

  • Moore BA, Tyrrell LP, Pita D, Bininda-Emonds ORP, Fernandez-Juricic E (2017b) Does retinal configuration make the head and eyes of foveate birds move? Sci Rep 7:38406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke CT, Hall MI, Pitlik T, Fernández-Juricic E (2010a) Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement. PLoS One 5:e12802

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Rourke CT, Pitlik T, Hoover M, Fernández-Juricic E (2010b) Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches. PLoS One 5:e12169

    Article  PubMed  PubMed Central  Google Scholar 

  • Orihuela G, Terborgh J, Ceballos N, Glander K (2014) When top-down becomes bottom up: behaviour of hyperdense howler monkeys (Alouatta seniculus) trapped on a 0.6 Ha island. PloS One 9:e82197

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    Article  CAS  PubMed  Google Scholar 

  • Pettigrew JD (1978) Comparison of the retinotopic organization of the visual wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision. In: Cool SJ, Smith EL (eds) Frontiers in visual science, springer series in optical sciences, vol 8. Springer, Berlin, Heidelberg

    Google Scholar 

  • Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193:675–678

    Article  CAS  PubMed  Google Scholar 

  • Pita D, Moore BA, Tyrrell LP, Fernández-Juricic E (2015) Vision in two cyprinid fish: implications for collective behavior. Peer J. https://doi.org/10.7717/peerj.1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Portugal SJ, Murn CP, Martin GR (2017) White-headed vulture Trigonoceps occipitalis shows visual field characteristics of hunting raptors. Ibis 159:463–466

    Article  Google Scholar 

  • Potier S (2020) Visual adaptations in predatory and scavenging diurnal raptors. Diversity 12:400

    Article  Google Scholar 

  • Potier S, Bonadonna F, Kelber A, Martin GR, Isard P-F, Dulaurent T, Duriez O (2016) Visual abilities in two raptors with different foraging ecologies. J Exp Biol 219:2639–2649

    PubMed  Google Scholar 

  • Potier S, Bonadonna F, Martin GR, Isard P-F, Dulaurent T, Mentek M, Duriez O (2017) Visual configuration of two species of Falconidae with different foraging ecologies. Ibis 160:54–61

    Article  Google Scholar 

  • Potier S, Duriez O, Cunningham GB, Bonhomme V, O’Rourke C, Fernandez-Juricic E, Bonadonna F (2018) Visual field shape and foraging ecology in diurnal raptors. J Exp Biol. https://doi.org/10.1242/jeb.177295

    Article  PubMed  Google Scholar 

  • Potier S, Mitkus M, Kelber A (2020) Visual adaptations of diurnal and nocturnal raptors. Semin Cell Dev Biol 106:116–126

    Article  PubMed  Google Scholar 

  • Rettig NL (1978) Breeding behavior of the Harpy Eagle (Harpia harpyja). Auk 95:629–643

    Google Scholar 

  • Sutton LJ, Anderson DL, Franco M, Gomes FBR, McClure CJW, Miranda EBP, Vargas FH, Vargas Gonzalez JJ, Puschendorf R (2022) Habitat resource overlap in two broad-ranged sympatric neotropical forest eagles. bioRxiv. https://doi.org/10.1101/2022.03.24.485595

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiollay JM (1994) Harpy Eagle (Harpia harpyja). In: del Hoy J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, volume 2, new world vultures to Guineafowl. Lynx Edicions, Barcelona, Spain, p 191

    Google Scholar 

  • Touchton JM, Hsu Y-C, Palleroni A (2002) Foraging ecology of reintroduced captive-bred subadult harpy eagles (Harpia harpyja) on Barro Colorado Island, Panama. Ornitol Neotrop 13:365–379

    Google Scholar 

  • Trinca CT, Ferrari SF, Lees AC (2008) Curiosity killed the bird: arbitrary hunting of Harpy Eagles Harpia harpyja on an agricultural frontier in Southern Brazilian Amazonia. Cotinga 30:12–15

    Google Scholar 

  • Troscianko J, von Bayern AMP, Chappell J, Rutz C, Martin GR (2012) Extreme binocular vision and a straight bill facilitate tool use in New Caledonian crows. Nature Comm 3:1110

    Article  Google Scholar 

  • Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell LP, Fernández-Juricic E (2017) The hawk-eyed songbird: retinal morphology, eye shape, and visual fields of an aerial insectivore. Am Nat 189:709–717

    Article  PubMed  Google Scholar 

  • van der Willigen RF, Frost BJ, Wagner H (1988) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237

    Article  Google Scholar 

  • Vargas D, Whitacre D, Mosquera R, Albuquerque J, Piana R, Thiollay J-M, Márquez C, Sánchez JE, Lezama-Lópes M, Midence S, Matola S, Aguilar S, Rettig N, Sanaiotti (2006) Estado y distribución actual del águila arpía (Harpia harpyja) en Centro y Sur America. Ornitologia Neotropical 17:39–55

  • Vargas-Gonzalez JJ, McCabe JD, Anderson DL, Curti M, Cardenas DC, Vargas FH (2020) Predictive habitat model reveals specificity in a broadly distributed forest raptor, the harpy eagle. J Raptor Res 54:349–363

    Article  Google Scholar 

  • Wagner H, Frost B (1994) Binocular responses of neurons in the barn owl’s visual Wulst. J Comp Physiol A 174:661–670

    Article  Google Scholar 

  • Wallman J, Pettigrew JD (1985) Conjugate and disjunctive saccades in two avian species with contrasting oculomotor strategies. J Neurosci 5:1418–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study did not utilize financial support or grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret A. Moore.

Ethics declarations

Conflict of interest

No author has any competing financial or non-financial interests to disclose.

Ethical approval

All animal housing, handling, and procedures were approved by and were in compliance with the ethical standards set by the Universidade Federal do Paraná, Setor de Ciências Agrárias, Comissão de Ética no Uso de Animais (protocol number 075/2016).

Human and animal participants

Not applicable.

Consent to participate

All authors agreed to participate in this manuscript.

Consent for publication

All authors read and approved results in this manuscript.

Additional information

Communicated by F. Bairlein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewer, A.E., de Moraes, W., Ferreira, T.A.C. et al. The visual fields of the Harpy Eagle (Harpia harpyja). J Ornithol 164, 651–658 (2023). https://doi.org/10.1007/s10336-023-02054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-023-02054-y

Keywords

Navigation