Skip to main content
Log in

Degradation of hazardous organic dyes in water by nanomaterials

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

There is about 700,000 tonnes of dyes, of more than 10,000 types, that are used as coloring agents in industries, mainly for textile. The release of dyes in natural media is of concern due to their high persistence, toxicity and potential to the bioaccumulate in living organisms. In particular, the most commercialized and carcinogenic azo dyes, that pocess a benzidine function, needs urgent attention. Here, we review the current status of cationic and anionic dyes. We present dye removal techniques using nanoparticles through adsorption and degradation. Among dye removal techniques, adsorption was found the most efficient and cheap. For that, conventional adsorbents such as commercial activated carbon, chitosan and natural waste are often employed. We discuss the use of ZnO, TiO2 and Fe0 to remove dye pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah AZ, Salamatinia B, Kamaruddin AH (2009) Application of response surface methodology for the optimization of NaOH treatment on oil palm frond towards improvement in the sorption of heavy metals. Desalination 244:227–238. doi:10.1016/j.desal.2008.06.004

    Article  CAS  Google Scholar 

  • Abraham SD, David ST, Bennie RB, Joel C, Kumar DS (2016) Eco-friendly and green synthesis of BiVO4 nanoparticle using microwave irradiation as photocatalyst for the degradation of Alizarin Red S. J Mol Struc 01:053. doi:10.1016/j.molstruc.2016.01.053

    Google Scholar 

  • Agorku ES, Mamo MA, Mamba BB, Pandey AC, Mishra AK (2015) Palladium-decorated zinc sulfide/reduced graphene oxide nanocomposites for enhanced visible light-driven photodegradation of indigo carmine. Mat Sci Semicon Proc 33:119–126. doi:10.1016/j.mssp.2015.01.033

    Article  CAS  Google Scholar 

  • Alfaro SO, Rodríguez-González V, Zaldívar-Cadena AA, Lee SW (2011) Sonochemical deposition of silver-TiO2 nanocomposites onto foamed waste-glass: evaluation of Eosin Y decomposition under sunlight irradiation. Catal Today 166:166–171. doi:10.1016/j.cattod.2010.06.028

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY (2004) Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis. Wiley, Chichester

    Google Scholar 

  • Annual Report (2015–2016) Ministry of Chemical and Fertilizers, Department of Chemicals and Petrochemicals, Govt. of India

  • Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, Cordoba de Torresi S (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23:6796–6800. doi:10.1021/la070161h

    Article  CAS  Google Scholar 

  • Bayazit MK, Yue J, Cao E, Gavriilidis A, Tang J (2016) Controllable synthesis of gold nanoparticles in aqueous solution by microwave assisted flow chemistry. ACS Sustainable Chem Eng 4:6435–6442

  • Bazin I, Hassine AIH, Hamouda YH, Mnif W, Bartegi A, Lopez-Ferber M, de Waard M, Gonzalez C (2012) Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol Environ Saf 85:131–136. doi:10.1016/j.ecoenv.2012.08.003

    Article  CAS  Google Scholar 

  • Bhatnagar A, Jain AK (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 281:49–55. doi:10.1016/j.jcis.2004.08.076

    Article  CAS  Google Scholar 

  • Bhattacharjee A, Ahmaruzzaman M (2015) Facile synthesis 2-dimensional CuO nanoleaves and their degradation behavior for eosin Y. Mater Lett 161:20–25. doi:10.1016/j.matlet.2015.08.064

    Article  CAS  Google Scholar 

  • Bonamali P, Kaur R, Grover IS (2016) Superior adsorption and photodegradation of eriochrome black-T dye by Fe3+ and Pt4+ impregnated TiO2 nanostructures of different shapes. J IndEngChem 33:178–184. doi:10.1016/j.jiec.2015.09.033

    Google Scholar 

  • Bonnia NN, Kamaruddin MS, Nawawi MH, Ratimd S, Azlinae HN, Ali ES (2016) Green biosynthesis of silver nanoparticles using ‘polygonum Hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chem 19:594–602. doi:10.1016/j.proche.2016.03.058

    Article  CAS  Google Scholar 

  • Brit (2008) Synthetic Dyes: A look at Environmental and Human Risks, Green Cotton, http://greencotton.wordpress.com/2008/06/18

  • Burhenne J, Riedl KD, Rengelshausen J, Meissner P, Muller O, Mikus G, Haefeli WE, Walter-Sack I (2008) Quantification of cationic anti-malaria agent methylene blue indifferent human biological matrices using cation exchange chromatography coupled to tandem mass spectrometry. J Chromatogr B 863:273–282. doi:10.1016/j.jchromb.2008.01.028

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. doi:10.1116/1.2815690

    Article  Google Scholar 

  • Carmen Z,  Daniela S (2012) Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview In: Puzyn T (ed) Organic pollutants ten years after the stockholm convention: environmental and analytical update, InTech, Rijeka, pp 55–86

  • Carrott PJM, Carrott MMLR, Roberts RA (1991) Physical adsorption of gases by microporous carbons. Colloids Surf 58:385–400. doi:10.1016/0166-6622(91)80217-C

    Article  CAS  Google Scholar 

  • CEH, Chemical Economics Handbook (2015) Color Pigments, 1–90, https://www.ihs.com/products/organic-color-chemical-economics-handbook.html

  • Chemical Industries Newsletter, SRI Consulting, California, March 2008

  • Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li E (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252:149–156. doi:10.1016/j.proenv.2013.04.120

    Article  CAS  Google Scholar 

  • Chen K, Wang GH, Li WB, Wan D, Hu Q, Lu LL (2014) Application of response surface methodology for optimization of orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles. Chinese Chem Lett 25:1455–1460. doi:10.1016/j.cclet.2014.06.014

    Article  CAS  Google Scholar 

  • Chequer FMD, de Venâncio PV, de Bianchi M LP, Antunes LMG (2012) Genotoxic and mutagenic effects of erythrosine B, a xanthenes food dye, on HepG2 cells. Food Chem Toxicol 50:3447–3451. doi:10.1016/j.fct.2012.07.042

    Article  CAS  Google Scholar 

  • Chung KT, Fulk GE, Andrews AW (1981) Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol 42:641–648

    CAS  Google Scholar 

  • Coelho MG, de Lima GM, Augusti R, Maria DA, Ardisson JD (2010) New materials for photocatalytic degradation of indigo carmine-synthesis, characterization and catalytic experiments of nanometric tin dioxide-based composites. Appl Catal B 96:67–71. doi:10.1016/j.apcatb.2010.02.002

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. BioresourTechnol 97:1061–1085. doi:10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solution by sorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. doi:10.1016/j.progpolymsci.2007.11.001

    Article  CAS  Google Scholar 

  • Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. basic green (malachite green) from aqueous solutions by adsorption using cyclodextrin based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110. doi:10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  • Culling CF, Allison RT, Barr WT (1985) Cellular Pathology Technique. Butterworths and Co. Publishers Ltd, Edition 4th, 1–621 v

  • Debnath S, Ballav N, Maity A, Pillay K (2015) Development of a polyaniline-lignocellulose composite for optimal adsorption of congo red. Int J Biol Macromol 75:199–209. doi:10.1016/j.ijbiomac.2015.01.011

    Article  CAS  Google Scholar 

  • Dierick M, Hoorebeke LV, Jacobs P, Masschaele B, Vlassenbroeck J, Cnudde V, Witte YD (2008) The use of 2D pixel detectors in micro-and nano-CT applications. NuclInstrum Methods Phys Res Sect A 591:255–259. doi:10.1016/j.nima.2008.03.068

    Article  CAS  Google Scholar 

  • Dil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkait MK (2016) Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Inst Chem Eng 59:210–220. doi:10.1016/j.jtice.2015.07.023

    Article  CAS  Google Scholar 

  • Dutta AK, Maji SK, Adhikary B (2014) γ-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose Bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34. doi:10.1080/19443994.2015.1060169

    Article  CAS  Google Scholar 

  • Ejhieh N, Kjorsandi M (2010) Photodecolorization of eriochrome black T using NiS-P zeolite as a heterogeneous catalyst. J Hazard Mater 176:629–637. doi:10.1016/j.jhazmat.2009.11.077

    Article  CAS  Google Scholar 

  • Fischer AH, Jacobson KA (2006) Jack Rose and Rolf Zeller, Preparation of cells and tissues for fluorescence microscopy, basic methods in microscopy (eds. Spector and Goldman), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, Chapter 4

  • Franssen MCR, Kircher M, Wohlgemuth R (2010) Industrial Biotechnology in the chemical and Pharmaceutical Industries, Industrial Biotechnology Sustainable Growth and Economic Success, Wiley-VCH Verlag GmbH & Co

  • Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005. doi:10.1016/S0045-6535(01)00118-7

    Article  CAS  Google Scholar 

  • Garg A, Visht S, Sharma PK, Kumar N (2011) Formulation, Characterization and Application on Nanoparticle: a Review. Der Pharm Sin 2:17–26

    CAS  Google Scholar 

  • Gautam RK, Mudhoo A, Chattopadhyaya MC (2013) Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of alizarin red S removal by mustard husk. J Environ Chem Eng 1:1283–1291. doi:10.1016/j.jece.2013.09.021

    Article  CAS  Google Scholar 

  • Gautam RK, Rawat V, Banerjee S, Sanroman MA, Soni S, Singh SK, Chattopadhyaya MC (2015) Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and congo red in water. J Mol Liq 212:227–236. doi:10.1016/j.molliq.2015.09.006

    Article  CAS  Google Scholar 

  • Ghaedi M, Hassanzadeh A, NasiriKokhdan S (2011) Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of Alizarin Red S and Morin. J Chem Eng 56:2511–2520. doi:10.1021/je2000414

    CAS  Google Scholar 

  • Ghaedi M, Zeinali N, Ghaedi AM, Teimuori M, Tashkhourian J (2014) Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle. Spectrochim Acta Mol Biomol Spectrosc 125:264–277. doi:10.1016/j.saa.2013.12.082

    Article  CAS  Google Scholar 

  • Ghaedi M, Mohammdi F, Ansari A, Dispers (2015) Gold nanoparticles loaded on activated carbon as novel adsorbent for kinetic and isotherm studies of methyl orange and sunset yellow adsorption. J Sci Technol 36:652–659. doi:10.1080/01932691.2014.893527

    CAS  Google Scholar 

  • Ghaedi M, Ghaedi AM, Mirtamizdoust B, Agarwal S, Gupta VK (2016) Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application for methyl orange removal from aqueous phase. Mol Liq 213:48–57. doi:10.1016/j.molliq.2015.09.051

    Article  CAS  Google Scholar 

  • Gholivand MB, Yamini Y, Dayeni M, Seidi S, Tahmasebi E (2015) Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. J Environ Chem Eng 3:529–540. doi:10.1016/j.jece.2015.01.011

    Article  CAS  Google Scholar 

  • Gordon PF, Gregory P (1983) Organic Chemistry in Colour. Springer, Berlin

    Google Scholar 

  • Gregory P (1990) Classification of Dyes by Chemical Structure, Chapter, The Chemistry and Application of Dyes, Part of the series Topics in Applied Chemistry, Springer US, 17–47

  • Grimley PM (1964) A tribasic stain for thin sections of plastic-embedded, OsO4-fixed tissues. Stain Technol 39:229–233

    Article  CAS  Google Scholar 

  • Guo H, Lin K, Zheng Z, Xiao F, Li S (2012) Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on congo red under visible light. Dyes Pigments 92:1278–1284. doi:10.1016/j.dyepig.2011.09.004

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal-A review. J Environ Manage 90:2313–2342. doi:10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2008) Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents. J Colloid Interface Sci 319:30–39. doi:10.1016/j.jcis.2007.09.091

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2011) Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85:710–716. doi:10.1016/j.chemosphere.2011.05.059

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R (2012a) Degradation of thiraminwater, soil and plants: a study by high-performance liquid chromatography. Biomed Chromatogr 26(1):69–75. doi:10.1002/bmc.1627

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Kumar R, Dureja P (2012b) Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J Enviro Sci Health Part B 47:823–831. doi:10.1080/03601234.2012.676487

    Article  CAS  Google Scholar 

  • Gupta B, Rani M, Salunke R, Kumar R (2012c) In vitro and in vivo studies on degradation of quinalphos in rats. J Haz Mat 213–214:285–291. doi:10.1016/j.jhazmat.2012.01.089

    Article  CAS  Google Scholar 

  • Gupta S, Giordano C, Gradzielski M, Mehta SK (2013a) Microwave-assisted synthesis of small Ru nanoparticles and their role in degradation of congo red. J Colloid Interface Sci 411:173–181. doi:10.1016/j.jcis.2013.08.030

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Pathania D, Kothiyal NC, Sharma G (2013b) Use of pectin–thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue. Carbohyd Polym 96:277–283. doi:10.1016/j.carbpol.2013.03.073

    Article  CAS  Google Scholar 

  • Hamadanian M, Sarabi AS, Mehra AM, Jabbari V (2014) Photocatalyst Cr-doped titanium oxide nanoparticles: fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation. Mat Sci Semicon Proc 21:161–166. doi:10.1016/j.mssp.2013.12.024

    Article  CAS  Google Scholar 

  • Hameed BH (2008) Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater 154:204–212. doi:10.1016/j.jhazmat.2007.10.010

    Article  CAS  Google Scholar 

  • Hao XL, Li NB, Luo HQ (2009) Determination of dextran sulfate sodium with crystal violet by triple-wavelength overlapping resonance: rayleigh scattering. Spectrochim Acta A 71:1673–1677. doi:10.1016/j.saa.2008.06.019

    Article  CAS  Google Scholar 

  • Hashemian S, Dehghanpor A, Moghahed M (2015) Cu0.5Mn0.5Fe2O4nanospinels as potential sorbent for adsorption of brilliant green. J Ind Eng Chem 24:308–314. doi:10.1016/j.jiec.2014.10.001

    Article  CAS  Google Scholar 

  • He H, Yang S, Yu K, Ju Y, Sun C, Wang L (2010) Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J Hazard Mater 173:393–400. doi:10.1016/j.jhazmat.2009.08.084

    Article  CAS  Google Scholar 

  • Hernández-Gordillo A, Rodríguez-González V, Oros-Ruiz S, Gómez R (2015) Photodegradation of Indigo Carmine dye by CdS nanostructures under blue-light irradiation emitted by LEDs. Catal Today 266:27–35. doi:10.1016/j.cattod.2015.09.001

    Article  CAS  Google Scholar 

  • Holme I (1984) Ecological aspects of color chemistry, Developments in the Chemistry and Technology of Organic Dyes, Society of Chemistry Industry, Oxford, 1st ed. 1–128

  • Hsieh SH, Chen WJ, Yeh TH (2015) Degradation of methylene blue using ZnSe–graphene nanocomposites under visible-light irradiation. Ceram Int 41:13759–13766. doi:10.1016/j.ceramint.2015.08.052

    Article  CAS  Google Scholar 

  • Huang L, Weng X, Chen Z, Mallavarapu M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta Mol Biomol Spectrosc 117:801–804. doi:10.1016/j.saa.2013.09.054

    Article  CAS  Google Scholar 

  • Jain R, Sikarwar S (2008) Removal of hazardous dye congored from waste material. J Hazard Mater 152:942–948. doi:10.1016/j.jhazmat.2007.07.070

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Shankar S (2015a) Synthesis characterization and applications of nano-structured metal hexacyanoferrates: a review. J Environ Anal Chem 2:1000128–1000141. doi:10.4172/2380-2391.1000128

    Article  Google Scholar 

  • Jassal V, Shanker U, Kaith BS, Shankar S (2015b) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5:26141–26149. doi:10.1039/C5RA03266K

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Kaith BS (2016a) Aegle marmelos mediated green synthesis of different nanostructured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:1–13. doi:10.1155/2016/2715026

    Article  Google Scholar 

  • Jassal V, Shanker U, Gahlot U (2016b) Green synthesis of some iron oxide nanoparticles and their interaction with 2-Amino, 3-Amino and 4-Aminopyridines. Mater Today Proc 3:1874–1882. doi:10.1016/j.matpr.2016.04.087

    Article  Google Scholar 

  • Jassal V, Shanker U, Gahlot S, Kaith BS, Kamaluddin, Iqubal Md A, Samuel P (2016c) Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl Phys A 122:271–282. doi:10.1007/s00339-016-9777-4

    Article  CAS  Google Scholar 

  • Jeyasubramanian K, Hikku GS, Sharma RK (2015) Photo-catalytic degradation of methyl violet dye using zinc oxide nano particles prepared by a novel precipitation method and its anti-bacterial activities. J Water Proc Eng 8:35–44. doi:10.1016/j.jwpe.2015.08.007

    Article  Google Scholar 

  • Jiang S, Zhao R, Ren Z, Chen X, Tian H, Wie X, Li X, Shen G, Han G (2016) A reduced graphene oxide (rGO)-ferro-electrics hybrid nanocomposite as high efficient visible-light-driven photocatalyst. Chemistry Select 1(18):6020–6025

  • Jo KD, Dasgupta PK (2003) Continuous on-line feedback based flow titrations. Complexometric titrations of calcium and magnesium. Talanta 60:131–137. doi:10.1016/S0039-9140(03)00114-0

    Article  CAS  Google Scholar 

  • Ju Y, Fang J, Liu X, Xu Z, Ren X, Sun C, Yang S, Ren Q, Ding Y, Yu K, Wang L, Wei Z (2011) Photodegradation of crystal violet in TiO2 suspensions using UV–Vis irradiation from two microwave-powered electrode less discharge lamps (EDL-2): products, mechanism and feasibility. J Hazard Mater 185:1489–1498. doi:10.1016/j.jhazmat.2010.10.074

    Article  CAS  Google Scholar 

  • Julkapli NM, Bagheri S, Hamid SBA (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1–25. doi:10.1155/2014/692307

    Article  CAS  Google Scholar 

  • Kansal SK, Lamba R, Mehta SK, Umar A (2013a) Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. Mat Lett 106:385–389. doi:10.1016/j.matlet.2013.05.074

    Article  CAS  Google Scholar 

  • Kansal SK, Sood S, Umar A, Mehta SK (2013b) Photocatalytic degradation of eriochrome black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Compd 581:392–397. doi:10.1016/j.jallcom.2013.07.069

    Article  CAS  Google Scholar 

  • Kashinath L, Namratha K, Byrappa K (2016) Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater Today Proc 3:74–83. doi:10.1016/j.matpr.2016.01.123

    Article  Google Scholar 

  • Kaur J, Singhal S (2014a) Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of methyl orange. Ceramics Int 40:7417–7424. doi:10.1016/j.ceramint.2013.12.088

    Article  CAS  Google Scholar 

  • Kaur J, Singhal S (2014b) Heterogeneous photocatalytic degradation of rose bengal: effect of operational parameters. Phys B 450:49–53. doi:10.1016/j.physb.2014.05.069

    Article  CAS  Google Scholar 

  • Kazeminezhad I, Sadollahkhani A (2014) Photocatalytic degradation of eriochrome black T dye using ZnO nanoparticles. Mater Lett 120:267–270. doi:10.1016/j.matlet.2014.01.118

    Article  CAS  Google Scholar 

  • Kdasi A, Idris A, Saed K, Guan C (2004) Treatment of textile wastewater by advanced oxidation processes-A review. Global Nest Int J 6:222–230

    Google Scholar 

  • Khan TA, Sharma S, Ali I (2011) Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magniferaindica) leaf powder: equilibrium, kinetic and thermodynamic studies. J Toxicol Environ Health 3:286–297. doi:10.5897/jtehs

    CAS  Google Scholar 

  • Khan MA, Alam MM, Naushad M, Alothman ZA, Kumar M, Ahamad T (2015) Sol-gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: an eco-friendly and economical approach. Chem Eng J 279:416–424. doi:10.1016/j.cej.2015.05.042

    Article  CAS  Google Scholar 

  • Kismir Y, Aroguz AZ (2011) Adsorption characteristics of the hazardous dye Brilliant Green on Saklikent mud. J Chem Eng 172:199–206. doi:10.1016/j.cej.2011.05.090

    Article  CAS  Google Scholar 

  • Kleinstreuer C, Li J, Koo J (2008) Microfluidics of nano-drug delivery. Int J Heat Mass Transfer 51:5590–5597. doi:10.1016/j.ijheatmasstransfer.2008.04.043

    Article  Google Scholar 

  • Kocak N, Sahin M, Kücükkolbasi S, Erdogan ZO (2012) Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor. Int J Biol Macromole 51:1159–1166. doi:10.1016/j.ijbiomac.2012.09.003

    Article  CAS  Google Scholar 

  • Kolya H, Maiti P, Pandey A, Tripathy T (2015) Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthusgangeticus Linn leaf extract. J Anal Sci Technol 6:33–39. doi:10.1186/s40543-015-0074-1

    Article  Google Scholar 

  • Kong JZ, Li AD, Li XY, Zhai HF, Zhang WQ, Gong YP, Li H, Wu D (2010) Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J Solid State Chem 183:1359–1364. doi:10.1016/j.jssc.2010.04.005

    Article  CAS  Google Scholar 

  • Kong LP, Gan XJ, Ahmad ALB, Hamed BH, Evarts ER, Ooi BS, Lim JK (2012) Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal. Chem Eng J 197:350–358. doi:10.1016/j.cej.2012.05.019

    Article  CAS  Google Scholar 

  • Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermummarginatum. Chem Eng J 192:67–76. doi:10.1016/j.cej.2012.03.057

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2011) Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265:112–118. doi:10.1016/j.desal.2010.07.040

    Article  CAS  Google Scholar 

  • Kumar V, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp. a fresh water algae: equilibrium and kinetic modeling. Process Biochem 40:2865–2872. doi:10.1016/j.procbio.2005.01.007

    Article  CAS  Google Scholar 

  • Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles from Ulva lactuca. Colloids Surf B 103:658–661. doi:10.1016/j.colsurfb.2012.11.022

    Article  CAS  Google Scholar 

  • Kumar R, Rashid J, Barakat MA (2014) Synthesis and characterization of a starch-AlOOH-FeS2 nanocomposite for the adsorption of congo red dye from aqueous solution. RSC Adv 4:38334–38340. doi:10.1016/j.jallcom.2014.12.232

    Article  CAS  Google Scholar 

  • Kumar R, Kumar G, Akhtar MS, Umar A (2015) Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. J Alloys Compd 629:167–172. doi:10.1016/j.jallcom.2014.12.232

    Article  CAS  Google Scholar 

  • Kuo WS, Ho PH (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45:77–83. doi:10.1016/S0045-6535(01)00008-X

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmallanatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302. doi:10.1021/nl903518f

    Article  CAS  Google Scholar 

  • Kurt BZ, Durmus Z, Durmus A (2016) Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes. Solid State Sci 51:51–58. doi:10.1016/j.solidstatesciences.2015.11.012

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Mitropoulos AC (2012) Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem Eng J 189–190:148–159. doi:10.1016/j.cej.2012.02.045

    Article  CAS  Google Scholar 

  • Lattuada M, Hatton T (2011) Synthesis, properties and applications of Janus nanoparticles. Nano Today 6:286–308. doi:10.1016/j.nantod.2011.04

    Article  CAS  Google Scholar 

  • Lee HJ, Kim JH, Park SS, Hong SS, Lee GD (2015) Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. Ind Eng Chem 25:199–206. doi:10.1016/j.jiec.2014.10.035

    Article  CAS  Google Scholar 

  • Lewis RJ (1992) Sax’s Dangerous Properties of Industrial Materials, Van Nostrand-Reinhold, New York, 8th Ed, 153: 1–3

  • Li D, Zhang Y, Zhang Y, Zhou X, Guo S (2013) Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation. J Hazard Mater 258:42–49. doi:10.1016/j.jhazmat.2013.02.058

    Article  CAS  Google Scholar 

  • Li C, Dong Y, Yang J, Li Y, Huang C (2014) Modified nano-graphite/Fe3O4 composite as efficient adsorbent for the removal of methyl violet from aqueous solution. J Mol Liq 196:348–356. doi:10.1016/j.molliq.2014.04.010

    Article  CAS  Google Scholar 

  • Liu Y, Pei F, Lu R, Xu S, Cao S (2014) TiO2/N-graphene nanocomposite via a facile in situ hydrothermal sol-gel strategy for visible light photodegradation of eosin Y. Mater Res Bull 60:188–194. doi:10.1016/j.materresbull.2014.07.047

    Article  CAS  Google Scholar 

  • Lunn G, Sansone EB (1994) Destruction of hazardous chemicals in the laboratory, 2nd edn. Wiley, New York, p 71

    Google Scholar 

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J Hazard Mater 303:145–153. doi:10.1016/j.jhazmat.2015.10.034

    Article  CAS  Google Scholar 

  • Ma Y, Zheng Y, Chen JP (2011) A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: synthesis, characterization and performance. J Colloid Interface Sci 354:785–792. doi:10.1016/j.jcis.2010.10.041

    Article  CAS  Google Scholar 

  • Mai FD, Chen CC, Chen JL, Liu SC (2008) Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method. J Chromatogr A 1189:355–365. doi:10.1016/j.chroma.2008.01.027

    Article  CAS  Google Scholar 

  • Malik R, Tomer VK, Rana PS, Nehra SP, Duhan S (2015) Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of rose Bengal. Mater Lett 154:124–127. doi:10.1016/j.matlet.2015.04.056

    Article  CAS  Google Scholar 

  • Mekewi MA, Darwish AS, Amin MS, EshaqGh Bourazan HA (2016) Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egypt J Petrol 25(2):269–279. doi:10.1016/j.ejpe.2015.06.011

    Article  Google Scholar 

  • Ministry of Chemical and Fertilizers, India(MCF, India) (2016) Annual Report (2015–2016), Department of Chemicals and Petrochemicals, Govt. of India. http://chemicals.nic.in/sites/default/files/Annual%20Report%20English%202015-16.pdf

  • Mittal A, Malviya A, Kaur D, Mittal J, Kurup L (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J Hazard Mater 148:229–240. doi:10.1016/j.jhazmat.2007.02.028

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP, Singh G, Kumar K (2002) Removal of dyes from wastewater using fly ash, a low-cost adsorbent. Ind Eng Chem Res 41:3688–3695. doi:10.1021/ie010667+

    Article  CAS  Google Scholar 

  • Moothi K, Simate GS, Falcon R, Iyuke SE, Meyyappan M (2015) Carbon nanotube synthesis using coal pyrolysis. Langmuir 31:9464–9472. doi:10.1021/acs.langmuir.5b01894

    Article  CAS  Google Scholar 

  • Moriguchi T, Yano K, Nakagawa S, Kaji F (2003) Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy. J Colloid Interface Sci 260:19–25. doi:10.1021/jp904481z

    Article  CAS  Google Scholar 

  • Motahari F, Mozdianfard MR, Salvati-Niasari M (2015) Synthesis and adsorption studies of NiO nanoparticles in the presence of H 2 acacen ligand for removing rhodamine B in waste water treatment. Process Safe Environm 93:282–292. doi:10.1016/j.psep.2014.06.006

    Article  CAS  Google Scholar 

  • Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168:806–812. doi:10.1016/j.jhazmat.2009.02.097

    Article  CAS  Google Scholar 

  • Munusamy S, Aparna RSL, Prasad RGSV, Phani AR (2013) Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sustain Chem Process. doi:10.1186/2043-7129-1-4

    Google Scholar 

  • Muruganandham M, Swaminathan M (2004) Decolourisation of reactive orange 4 by fenton and photo-fenton oxidation technology. Dyes Pigments 63:315–321. doi:10.1016/j.dyepig.2004.03.004

    Article  CAS  Google Scholar 

  • Nagaraja R, Kottam N, Girija CR, Nagabhushana BM (2012) Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol 215–216:91–97. doi:10.1016/j.powtec.2011.09.014

    Article  CAS  Google Scholar 

  • Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34:1837–1845. doi:10.1016/S0043-1354(99)00331-0

    Article  CAS  Google Scholar 

  • Naskar M, Patra A, Chatterjee M (2006) Understanding the role of surfactants on the preparation of ZnS nanocrystals. J Colloid Interface Sci 297:271–275. doi:10.1016/j.jcis.2005.10.057

    Article  CAS  Google Scholar 

  • Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134. doi:10.1016/j.cej.2011.02.066

    Article  CAS  Google Scholar 

  • Nekouei F, Noorizadeh H, Nekouei S, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies. J Mol Liq 213:360–368. doi:10.1016/j.molliq.2015.07.058

    Article  CAS  Google Scholar 

  • Nemerow NL, Dasgupta A (1991) Industrial and Hazardous Waste Treatment. Van Nostrand Reinhold Publishing Company, New York, London, Elsevier Butterworth-Heinemann

    Google Scholar 

  • Nezamzadeh-Ejhieh A, Banan Z (2012) Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination 284:157–166. doi:10.1016/j.desal.2011.08.050

    Article  CAS  Google Scholar 

  • Ofomaja AE (2008) Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansoniaaltissima) wood sawdust. Chem Eng J 143:85–95. doi:10.1016/j.cej.2007.12.019

    Article  CAS  Google Scholar 

  • Othman I, Mohamed RM, Ibrahem FM (2007) Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2. J Photochem Photobiol A: Chem 189:80–85. doi:10.1016/j.jphotochem.2007.01.010

    Article  CAS  Google Scholar 

  • Pagga U, Brown D (1986) The degradation of dyestuffs: part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15:479–491. doi:10.12691/ijebb-2-1-6

    Article  CAS  Google Scholar 

  • Pandey A, Kalal S, Ameta C, Ameta R, Kumar S, Punjabi PB (2015) Synthesis, characterization and application of naive and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue. J Saudi Chem Soc 19:528–536. doi:10.1016/j.jscs.2015.05.013

    Article  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196. doi:10.1016/S0143-7208(03)00064-0

    Article  CAS  Google Scholar 

  • Phillips D (1996) Environmentally friendly productive and reliable: priorities for cotton dyes and dyeing processes. J Soc Dyers Colour 112:183–186. doi:10.1111/j.1478-4408.1996.tb01814.x

    Article  CAS  Google Scholar 

  • Preethi T, Abarna B, Vidhya KN, Rajarajeswari GR (2014) Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram Int 40:13159–13167. doi:10.1016/j.ceramint.2014.05.020

    Article  CAS  Google Scholar 

  • Prevot AB, BaiocchiC Brussino MC, Pramauro E, Savarino P, Augugliaro V, Marcì G, Palmisano L (2001) Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ Sci Technol 35:971–976. doi:10.1021/es000162v

    Article  CAS  Google Scholar 

  • Prillo S, Ferreira ML, Rueda EH (2009) The effect of pH in the adsorption of Alizarin and Eriochrome Blue Black R onto iron oxides. J Hazard Mater 168:168–178. doi:10.1016/j.jhazmat.2009.02.007

    Article  CAS  Google Scholar 

  • Qin J, Li R, Lu C, Jiang Y, Tang H, Yang X (2015) Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceram Int 41:4231–4237. doi:10.1016/j.ceramint.2014.11.046

    Article  CAS  Google Scholar 

  • Raj KP, Thangaraj V, Uthirakumar AP (2016) Enhanced photocatalytic behaviour of synthesized nickel oxide nanoparticles on fluorescein under different irradiations. Optik 127:2631–2634. doi:10.1016/j.ijleo.2015.11.222

    Article  Google Scholar 

  • Rani M (2012) Studies on decay profiles of quinalphos and thiram pesticides. Ph.D Thesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, Chapter 1, 5

  • Rani M, Shanker U, Chaurasia A (2017a) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Env Chem Engg. doi:10.1016/j.jece.2017.05.026

    Google Scholar 

  • Rani M, Shanker U, Jassal V (2017b) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222. doi:10.1016/j.jenvman.2016.12.068

    Article  CAS  Google Scholar 

  • Ratna Padhi BS (2012) Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. Int J Environ Sci 3:940–955. doi:10.6088/ijes.2012030133002

    CAS  Google Scholar 

  • Ravanan M, Ghaedi M, Ansari A, Taghizadeh F, Elhamifar D (2014) Comparison of the efficiency of Cu and silver nanoparticle loaded on supports for the removal of Eosin Y from aqueous solution: kinetic and isotherm study. Spectrochim Acta Mol Biomol Spectrosc 123:467–472. doi:10.1016/j.saa.2013.12.049

    Article  CAS  Google Scholar 

  • Riaz U, Ashraf SM, Budhiraja V, Aleem S, Kashyap J (2016) Comparative studies of the photocatalytic and microwave-assisted degradation of alizarin red using ZnO/poly(1-naphthylamine) nanohybrids. J Mol Liq 216:259–267. doi:10.1016/j.molliq.2016.01.018

    Article  CAS  Google Scholar 

  • Richardson SD, Wilson CS, Rusch KA (2004) Use of rhodamine water tracer in the marshland upwelling system. Gr Water 42:678–688. doi:10.1111/j.1745-6584.2004.tb02722.x

    Article  CAS  Google Scholar 

  • Ritchie EE, Princz JI, Robidoux PY, Scroggins RP (2013) Ecotoxicity of xanthenes dyes and a non-chlorinated bisphenol in soil. Chemosphere 90:2129–2135. doi:10.1016/j.chemosphere.2012.10.096

    Article  CAS  Google Scholar 

  • Roosta M, Ghaedi M, Mohammadi M (2014) Removal of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: optimization by experimental design methodology. Powder Technol 267:134–144. doi:10.1016/j.powtec.2014.06.052

    Article  CAS  Google Scholar 

  • Roushani M, Mavaeia M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. J MolCatal A 409:102–109. doi:10.1016/j.molcata.2015.08.011

    Article  CAS  Google Scholar 

  • Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959. doi:10.1007/s13204-014-0392-4

    Article  CAS  Google Scholar 

  • Sachdeva S, Kumar A (2009) Preparation of nanoporous composite carbon membrane for separation of rhodamine B dye. J MembrSci 329:2–10. doi:10.1016/j.memsci.2008.10.050

    CAS  Google Scholar 

  • Safavi A, Momeni S (2012) Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. J Hazard Mater 201–202:125–131. doi:10.1016/j.jhazmat.2011.11.048

    Article  CAS  Google Scholar 

  • Saha S, Pal A (2014) Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep Purif Technol 134:26–36. doi:10.1016/j.seppur.2014.07.021

    Article  CAS  Google Scholar 

  • Sahoo C, Gupta AK, Pal A (2005) Photocatalytic degradation of methyl red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalination 181:91–100. doi:10.1016/j.desal.2005.02.014

    Article  CAS  Google Scholar 

  • San NO, Celebioglu A, Tumtas Y, Uyar T, Tekinay T (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4:32249–32255. doi:10.1039/c4ra04250f

    Article  CAS  Google Scholar 

  • Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta Mol Biomol Spectrosc 121:746–750. doi:10.1016/j.saa.2013.12.020

    Article  CAS  Google Scholar 

  • Sarnaik S, Kanekar P (1999) Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl Microbiol Biotechnol 52:251–254. doi:10.1007/s002530051517

    Article  CAS  Google Scholar 

  • Sehati S, Entezari MH (2016) Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. J Colloid Interface Sci 462:130–139. doi:10.1016/j.jcis.2015.09.070

    Article  CAS  Google Scholar 

  • Shamsipur M, Rajabi HR (2014) Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim Acta Mol Biomol Spectrosc 122:260–267. doi:10.1016/j.saa.2013.11.064

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M, Kaith BS (2016a) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Env Anal Chem 96:801–835. doi:10.1080/03067319.2016.1209663

    CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2016b) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC Adv. 6:94989–94999. doi:10.1039/C6RA17555D

    Article  CAS  Google Scholar 

  • Sheibani M, Ghaedi M, Marahel F, Ansari A (2015) Congo red removal using oxidized multiwalled carbon nanotubes: kinetic and isotherm study. Desalin Water Treat 53:844–852. doi:10.1080/19443994.2013.867540

    Article  CAS  Google Scholar 

  • Shu J, Wang Z, Huang Y, Huang N, Ren C, Zhang W (2015) Adsorption removal of congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics and mechanism analysis. J Alloys Compd 633:338–346. doi:10.1016/j.jallcom.2015.02.048

    Article  CAS  Google Scholar 

  • Sikhwivhilu K, Moutloali RM (2015) Functionalized PVDF membrane-immobilized Fe/Ni bimetallic nanoparticles for catalytic degradation of methyl orange dye: a comparative study. Mater Today: Proc 2:4070–4080. doi:10.1016/j.matpr.2015.08.037

    Article  Google Scholar 

  • Singh KP, Gupta S, Singh AK, Sinha S (2011) Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J Hazard Mater 186:1462–1473. doi:10.1016/j.jhazmat.2010.12.032

    Article  CAS  Google Scholar 

  • Sood S, Umar A, Mehta SK, Sinha ASK, Kansal SK (2015) Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. Ceram Int 41:3533–3540. doi:10.1016/j.ceramint.2014.11.010

    Article  CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66:319–329. doi:10.1016/j.aquatox.2003.09.008

    Article  CAS  Google Scholar 

  • Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringaoleifera peel extract. J Photochem Photobiol B: Biology 161:122–128. doi:10.1016/j.jphotobiol.2016.05.019

    Article  CAS  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154:337–346. doi:10.1016/j.jhazmat.2007.10.031

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Franklin LB (1991) Wastewater engineering: treatment. Disposal and Reuse, McGraw Hill Inc, New York

    Google Scholar 

  • Thapa R, Maiti S, Rana TH, Maiti UN, Chattopadhyay KK (2012) Anatase TiO2 nanoparticles synthesis via simple hydrothermal route: degradation of orange II, methyl orange and Rhodamine B. J Mol Cat A: Chem 363:223–229. doi:10.1016/j.molcata.2012.06.013

    Article  CAS  Google Scholar 

  • Tian H,  Li J, Mu Z, Landong L, Zhengping H (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Puri Technol 66(1):84–89

  • Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem App 2014:742346–742353. doi:10.1155/2014/742346

    CAS  Google Scholar 

  • Vignesh K, Suganthi A, Rajarajan M, Sakthivadivel R (2012) Visible-light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles. Appl Surf Sci 258:4592–4600. doi:10.1016/j.apsusc.2012.01.035

    Article  CAS  Google Scholar 

  • Wang W, Silva CG, Faria JL (2007) Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Cata B Environ 70:470–478

  • William L IV, Ismail AA, Mazyck DW (2008) Impact of heat treatment and composition of ZnO–TiO2 nanoparticles for photocatalytic oxidation of an azo dye. Ind Eng Chem Res 47:1483–1487. doi:10.1021/ie071255p

    Article  CAS  Google Scholar 

  • Xu X, Shao M, Huang J (2013a) Crystalline TIT TiO2 nanotubes for high-performance field emitters and meta/semiconductor/metal back-to-back Schottky diode. Ding M Sci Adv Mater 5:830–835. doi:10.1166/sam.2013.1524

    Article  CAS  Google Scholar 

  • Xu H, Zhang Y, Jiang Q, Reddy N, Yang Y (2013b) Biodegradable hollow zinc nanoparticles for removal of reactive dyes from wastewater. J Environ Manage 125:33–40. doi:10.1016/j.jenvman.2013.03.050

    Article  CAS  Google Scholar 

  • Xu C, Wu H, Gu FL (2014) Efficient adsorption and photocatalytic degradation of rhodamine B under visible light over BiOBr/montmorillonite composite. J Hazard Mater 275:185–192. doi:10.1016/j.jhazmat.2014.04.064

    Article  CAS  Google Scholar 

  • Zhang W, Wu CW (2014) Dyeing of multiple types of fabrics with a single reactive azo disperse dye. Chem Papers 68:330–335. doi:10.2478/s11696-013-0444-3

    CAS  Google Scholar 

  • Zhang F, Yin X, Zhang W (2016) Development of magnetic Sr5(PO4)3(OH)/(Fe3O4 nanorod for adsorption of congo red from solution. J Alloys Compd 657:809–817. doi:10.1016/j.jallcom.2015.10.178

    Article  CAS  Google Scholar 

  • Zhao X, Wang W, Zhang Y, Wu S, Li F, Liu JP (2014) Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem Eng J 250:164–174. doi:10.1016/j.cej.2014.03.113

    Article  CAS  Google Scholar 

  • Zonoozi MH, Moghaddam MRA, Arami M (2009) Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Sci Technol 59:1343–1351. doi:10.2166/wst.2009.128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Ms. Vidhisha Jassal is thankful to Ministry of Human Resource Development (MHRD), New Delhi, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Shanker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, U., Rani, M. & Jassal, V. Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15, 623–642 (2017). https://doi.org/10.1007/s10311-017-0650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0650-2

Keywords

Navigation