Skip to main content
Log in

Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The correlation between the rate of TEC index (ROTI) and scintillation indices S 4 and σ Φ for low-latitude region is analyzed in this study, using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at the south of Hong Kong for the periods June–August of 2012 and May 2013 and July–December of 2013. The analysis indicates that the correlation coefficient between ROTI and S 4/σ Φ is about 0.6 if data from all GPS satellites are used together. If each individual satellite is considered, the correlation coefficients are above 0.6 on average and sometimes above 0.8. The analysis also shows that the ratio of ROTI and S 4 varies between 1 and 4. The ratio ROTI/σ Φ, varies between 2 and 9. In addition, it is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation relationship with scintillation indices on geomagnetically disturbed days or in solar active months. Moreover, the data observed at low elevation angles have weak correlation between ROTI and scintillation indices. These results demonstrate the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70(4):360–378

    Article  Google Scholar 

  • Adewale AO, Oyeyemi EO, Adeloye AB, Mitchell CN, Rose JAR, Cilliers PJ (2012) A study of L-band scintillations and total electron content at an equatorial station, Lagos, Nigeria. Radio Sci. doi:10.1029/2011rs004846

    Google Scholar 

  • Akala AO, Doherty PH, Valladares CE, Carrano CS, Sheehan R (2011) Statistics of GPS scintillations over South America at three levels of solar activity. Radio Sci. doi:10.1029/2011rs004678

    Google Scholar 

  • Alfonsi L, Spogli L, Tong J, De Franceschi G, Romano V, Bourdillon A, Le Huy M, Mitchell CN (2011) GPS scintillation and TEC gradients at equatorial latitudes in April 2006. Adv Space Res 47(10):1750–1757

    Article  Google Scholar 

  • Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of Ionospheric Scintillation for GNSS users in Northern Europe. J Navig 58(2):241–256. doi:10.1017/s0373463305003218

    Article  Google Scholar 

  • Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci 23(3):363–378

    Article  Google Scholar 

  • Basu S, Groves K, Quinn J, Doherty P (1999) A comparison of TEC fluctuations and scintillations at Ascension Island. J Atmos Solar Terr Phys 61(16):1219–1226

    Article  Google Scholar 

  • Basu S, Groves K, Basu S, Sultan P (2002) Specification and forecasting of scintillations in communication/navigation links: current status and future plans. J Atmos Solar Terr Phys 64(16):1745–1754

    Article  Google Scholar 

  • Beach TL, Kintner PM (1999) Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations. J Geophy Res Space Phys (1978–2012) 104(A10):22553–22565

    Article  Google Scholar 

  • Béniguel Y, Romano V, Alfonsi L, Aquino M, Bourdillon A, Cannon P, De Franceschi G, Dubey S, Forte B, Gherm V (2009) Ionospheric scintillation monitoring and modelling. Ann Geophys 52(3–4):391–416

    Google Scholar 

  • Bhattacharyya A, Beach T, Basu S, Kintner P (2000) Nighttime equatorial ionosphere: GPS scintillations and differential carrier phase fluctuations. Radio Sci 35(1):209–224

    Article  Google Scholar 

  • Caissy M, Agrotis L, Weber G, Hernandez-Pajares M, Hugentobler U (2012) The international GNSS real-time service. GPS World 23(6):52

    Google Scholar 

  • Doherty PH, Delay SH, Valladares CE, Klobuchar JA (2003) Ionospheric scintillation effects on GPS in the equatorial and auroral regions. Navigation 50(4):235–245

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3):191–198

    Article  Google Scholar 

  • Gwal A, Dubey S, Wahi R, Feliziani A (2006) Amplitude and phase scintillation study at Chiang Rai, Thailand. Adv Space Res 38(11):2361–2365

    Article  Google Scholar 

  • Huang L, Wang J, Jiang Y, Chen Z, Zhao K (2014) A study of GPS ionospheric scintillations observed at Shenzhen. Adv Space Res 54(11):2208–2217

    Article  Google Scholar 

  • Jiao Y, Morton YT, Taylor S, Pelgrum W (2013) Characterization of high-latitude ionospheric scintillation of GPS signals. Radio Sci 48(6):698–708. doi:10.1002/2013rs005259

    Article  Google Scholar 

  • Kintner PM, Ledvina BM, de Paula ER (2007) GPS and ionospheric scintillations. Space Weather. doi:10.1029/2006sw000260

    Google Scholar 

  • Kintner P, Humphreys T, Hinks J (2009) GNSS and ionospheric scintillation. Inside GNSS 4:22–30

    Google Scholar 

  • Li G, Ning B, Yuan H (2007) Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planets Space 59(4):279–285

    Article  Google Scholar 

  • Li G, Ning B, Ren Z, Hu L (2010) Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum. GPS Solut 14(4):331–341. doi:10.1007/s10291-009-0156-x

    Article  Google Scholar 

  • Liu ZZ, Xu R, Yu M, Xu JS, Pelgrum W, Taylor S, Chen W, Ding XL (2013) A comparison of GPS-based ionospheric scintillation observations in North and South Hong Kong. In: ION Pacific PNT

  • Ma G, Maruyama T (2006) A super bubble detected by dense GPS network at east Asian longitudes. Geophys Res Lett 33:L21103

    Article  Google Scholar 

  • Menvielle M, Berthelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys 29(3):415–432

    Article  Google Scholar 

  • Morton Y, Xu D, Carroll M, Jiao Y, Wang J, Taylor S, Mao X (2014) Multi-constellation and multi-frequency GNSS studies of ionospheric scintillation. In: Radio science meeting (USNC-URSI NRSM), 2014 United States National Committee of URSI National, Boulder, CO, USA, 8–11 Jan 2014

  • Muella M, de Paula E, Kantor I, Batista I, Sobral J, Abdu M, Kintner P, Groves K, Smorigo P (2008) GPS L-band scintillations and ionospheric irregularity zonal drifts inferred at equatorial and low-latitude regions. J Atmos Solar Terr Phys 70(10):1261–1272

    Article  Google Scholar 

  • Pi X, Mannucci A, Lindqwister U, Ho C (1997) Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18):2283–2286

    Article  Google Scholar 

  • Pi X, Mannucci AJ, Valant-Spaight B, Bar-Sever Y, Romans LJ, Skone S, Sparks L (2013) Hall GM Observations of global and regional ionospheric irregularities and scintillation using GNSS tracking networks. In: Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, 23–25 April, pp 752–761

  • Prikryl P, Jayachandran P, Chadwick R, Kelly T (2015) Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann Geophys 33:531–545

    Article  Google Scholar 

  • Seif A, Abdullah M, Marie Hasbi A, Zou Y (2012) Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity. Acta Astronaut 81(1):92–101

    Article  Google Scholar 

  • Spogli L, Alfonsi L, De Franceschi G, Romano V, Aquino M, Dodson A (2009) Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann Geophys 27:3429–3437

    Article  Google Scholar 

  • Spogli L, Alfonsi L, Romano V, De Franceschi G, Joao Francisco GM, Hirokazu Shimabukuro M, Bougard B, Aquino M (2013) Assessing the GNSS scintillation climate over Brazil under increasing solar activity. J Atmos Solar Terr Phys 105:199–206

    Article  Google Scholar 

  • Sreeja VV, Aquino M, Forte B, Elmas Z, Hancock C, De Franceschi G, Alfonsi L, Spogli L, Romano V, Bougard B (2011) Tackling ionospheric scintillation threat to GNSS in Latin America. J Space Weather Space Clim 1(1):A05

    Article  Google Scholar 

  • Van Dierendonck A (1999) Eye on the ionosphere: measuring ionospheric scintillation effects from GPS signals. GPS Solut 2(4):60–63

    Article  Google Scholar 

  • Van Dierendonck AJ, Arbesser-Rastburg B (2001) Measuring ionospheric scintillation in the equatorial region over Africa, including measurements from SBAS geostationary satellite signals. Salt Lake City, CA, USA, pp 316–324

  • Wernik A, Secan J, Fremouw E (2003) Ionospheric irregularities and scintillation. Adv Space Res 31(4):971–981

    Article  Google Scholar 

  • Whitney HE, Basu S (1977) The effect of ionospheric scintillation on VHF/UHF satellite communications. Radio Sci 12(1):123–133

    Article  Google Scholar 

  • Xu J, Zhu J, Li L (2007) Effects of a major storm on GPS amplitude scintillations and phase fluctuations at Wuhan in China. Adv Space Res 39(8):1318–1324

    Article  Google Scholar 

  • Xu R, Liu Z, Li M, Morton Y, Chen W (2012) An analysis of low-latitude ionospheric scintillation and its effects on precise point positioning. J Global Position Syst 11(1):22–32. doi:10.5081/jgps.11.1.22

    Article  Google Scholar 

  • Zou Y, Wang D (2009) A study of GPS ionospheric scintillations observed at Guilin. J Atmos Solar Terr Phys 71(17–18):1948–1958. doi:10.1016/j.jastp.2009.08.005

    Article  Google Scholar 

Download references

Acknowledgments

The supports from the National Natural Science Foundation of China (Grant No. 41274039) are gratefully acknowledged. This work is supported by the Hong Kong Research Grants Council (RGC) projects (PolyU 5325/12E, F-PP0F and PolyU 5203/13E, B-Q37X). Zhizhao Liu acknowledges support from the Program of Introducing Talents of Discipline to Universities (Wuhan University, GNSS Research Center), China. The Lands Department of the Government of Hong Kong Special Administrative Region (HKSAR) is thanked for providing the GPS/GNSS data from the Hong Kong Satellite Positioning Reference Station Network (SatRef). We also would like to thank Prof. Jade Y. Morton at the Colorado State University, USA and Prof. Frank Van Graas at the Ohio University, USA, for their useful discussions. The anonymous reviewers are thanked for their valuable constructive suggestions that have significantly helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, Z. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut 20, 815–824 (2016). https://doi.org/10.1007/s10291-015-0492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0492-y

Keywords

Navigation