Skip to main content
Log in

IGS08: the IGS realization of ITRF2008

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

On April 17, 2011, the International GNSS Service (IGS) stopped using the IGS05 reference frame and adopted a new one, called IGS08, as the basis of its products. The latter was derived from the latest release of the International Terrestrial Reference Frame (ITRF2008). However, the simultaneous adoption of a new set of antenna phase center calibrations by the IGS required slight adaptations of ITRF2008 positions for 65 of the 232 IGS08 stations. The impact of the switch from IGS05 to IGS08 on GNSS station coordinates was twofold: in addition to a global transformation due to the frame change from ITRF2005 to ITRF2008, many station coordinates underwent small shifts due to antenna calibration updates, which need to be accounted for in any comparison or alignment of an IGS05-consistent solution to IGS08. Because the heterogeneous distribution of the IGS08 network makes it sub-optimal for the alignment of global frames, a smaller well-distributed sub-network was additionally designed and designated as the IGS08 core network. Only 2 months after their implementation, both the full IGS08 network and the IGS08 core network already strongly suffer from the loss of many reference stations. To avoid a future crisis situation, updates of IGS08 will certainly have to be considered before the next ITRF release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X (2009) IGS contribution to ITRF. J Geod 83(3–4):375–383. doi:10.1007/s00190-008-0294-x

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):2145. doi:10.1029/2001JB000570

    Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112:B12403. doi:10.1029/2007JB004933

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114:B04402. doi:10.1029/2008JB005727

    Article  Google Scholar 

  • Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011a) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi:10.1007/s10291-010-0184-6

    Article  Google Scholar 

  • Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2011b) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod. doi:10.1007/s00190-011-0487-6

  • Coulot D, Pollet A, Collilieux X, Berio P (2010) Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF. J Geod 84(1):31–50. doi:10.1007/s00190-009-0342-1

    Article  Google Scholar 

  • Dach R, Beutler G, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Switzerland

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Ferland R (2004) Reference frame working group technical report. In: Gowey K, Neilan R, Moore A (eds) IGS 2001–2002 technical reports, Jet Propulsion Laboratory, pp 25–33

  • Ferland R (2010) Description of IGS submission to ITRF2008. Available at http://www.itrf.ensg.ign.fr/ITRF_solutions/2008/doc/IGSsubmission4ITRF2008.txt

  • Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83(3–4):385–392. doi:10.1007/s00190-008-0295-9

    Article  Google Scholar 

  • Griffiths J, Gendt G, Nischan T, Ray J (2009) Assessment of the orbits from the 1st IGS reprocessing campaign. Eos Trans AGU 90(52), Fall Meet Suppl, Abstract G13A-04

  • Kouba J, Ray J, Watkins MM (1998) IGS reference frame realization. In: 1998 IGS Analysis Center workshop proceedings, European Space Operations Center, Darmstadt, Germany, pp 139–171

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8(4):251–266. doi:10.1007/s10291-004-0110-x

    Article  Google Scholar 

  • Ray JR, Rebischung P, Schmid R (2011) Dependence of IGS products on the ITRF datum. In: Proceedings of IAG Commission 1 symposium on reference frames for applications in geosciences, Marne-la-Vallée, France (in press)

  • Rothacher M, Mader G (1996) Combination of antenna phase center offsets and variations. IGS Central Bureau

  • Saastamoinen JH (1973) Contributions to the theory of atmospheric refraction. Bull Géod 105(1):279–298. doi:10.1007/BF02521844

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Springer TA (2009) NAPEOS—mathematical models and algorithms. ESA/ESOC Technical Note DOPS-SYS-TN-0100-OPS-GN, issue 1.0

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B050402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Wöppelmann G, Martin Miguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide-gauges world-wide. Global Planet Change 57(3–4):396–406. doi:10.1016/j.gloplacha.2007.02.002

    Article  Google Scholar 

  • Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi:10.1007/s00190-002-0294-1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank T. van Dam (University of Luxembourg) who supplied the loading deformation model used in this study. All IGS ACs are specially acknowledged for their fundamental contribution to the elaboration of IGS08 and igs08.atx. The IGS station operators are also thanked for their commitment to providing invaluable data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rebischung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebischung, P., Griffiths, J., Ray, J. et al. IGS08: the IGS realization of ITRF2008. GPS Solut 16, 483–494 (2012). https://doi.org/10.1007/s10291-011-0248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-011-0248-2

Keywords

Navigation