Skip to main content

Advertisement

Log in

Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1 % with a specificity of 90.0 %. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Institute of Health: Facts about diabetic retinopathy disease. National Eye Institute Health Information, No. 03–2171, 2009

  2. Phillips R, Forrester J, Sharp P: Automated detection and quantification of retinal exudates. Graefe Arch Clin Exp Ophthalmol 231:90–94, 1993

    Article  CAS  Google Scholar 

  3. Viswanath K, Murray McGavin DD: Diabetic retinopathy: clinical findings and management. Community Eye Health 16(46):21–24, 2003

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Oien GE, Osnes P: Diabetic retinopathy: automatic detection of early symptoms from retinal images. In Proc, Norw. Signal Process. Symposium, pp. 135–140, 1995

  5. Garcia M, Sanchez CI, Poza J, Lopez MI, Hornero R: Detection of hard exudates in retinal images using a radial basis function classifier. Biomed Eng Soc 37(7):1448–1463, 2009

    Google Scholar 

  6. Osareh A, Shadgar B, Markham R: A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans Inf Technol Biomed 13(4):535–545, 2009

    Article  PubMed  Google Scholar 

  7. Quellec G, Russell SR, Abramoff MD: Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging 30(2):523–533, 2011

    Article  PubMed  Google Scholar 

  8. Yazid H, Arof H, Isa HM: Automated identification of exudates and optic disc based on inverse surface thresholding. J Med Syst 36:1997–2004, 2012

    Article  PubMed  Google Scholar 

  9. Niemeijer M, Ginneken BV, Russell SR, Suttorp M, Abramoff MD: Automatic detection and differentiation of drusen, exudates and cotton wool spots in digital colour fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci 48:2260–2267, 2007

    Article  PubMed Central  PubMed  Google Scholar 

  10. Usher D, Dumskyj M, Himaga M, Williamson T, Nussey S, Boyce J: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabetes Med 21:84–90, 2004

    Article  CAS  Google Scholar 

  11. Zhang L, Li Q, You J, Zhang D: A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans Inf Technol Biomed 13(4):528–534, 2009

    Article  PubMed  Google Scholar 

  12. Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P: Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nathan Silbermankristy Ahlrich, Rob Fergus, Lakshminarayanan Subramanian: Case for automated detection of diabetic retinopathy. Association for the Advancement of Artificial Intelligence, 2010

  14. Dheeba J, TamilSelvi S: Classification of malignant and benign microcalcification using SVM classifier. IEEE Intl Conf Emerging Trends Electr Comput Technol, (ICETECT’2011), pp. 686–690, 2011

  15. Kui Wu, Kim Hui Yap: Fuzzy SVM for content-based image retrieval—a pseudo label support vector machine framework. IEEE Comput Intell Mag, may 2006, pp 10–16

  16. Wang Y, Wang S, Lai KK: A new fuzzy support vector machine to evaluate credit risk. IEEE Trans on fuzzy systems 13(6):820–831, 2005

    Article  Google Scholar 

  17. Lin CF, Wang SD: Fuzzy support vector machines. IEEE Trans Neural Netw 18(2):464–471, 2002

    Google Scholar 

  18. Aquino A, Gegundez-Arias ME, Marin D: Detecting the optical disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869, 2010

    Article  PubMed  Google Scholar 

  19. Laws KI: Texture energy measures. Proc. Image Understanding Workshop, 1979, pp. 47–51

  20. Laws KI: Textured image segmentation, Ph.D. dissertation, Univ. Southern California, Los Angeles, CA, USCIPI Rep. 940, 1980

  21. Laws K: Rapid texture identification. In Image Processing for Missile Guidance, 238, 1980

  22. Gevers T, Stokman H: Robust histogram construction from color invariants for object recognition. IEEE Trans Pattern Anal Mach Intell 25(10):1–6, 2003

    Google Scholar 

  23. Pietikäinen M, Rosenfeld A, Davis LS: Experiments with texture classification using averages of local pattern matches. IEEE Trans Syst Man Cybern SMC-13(3):421–426, 1983

    Article  Google Scholar 

  24. Guyon I, Matic N, Vapnik VN: Discovering information patterns and data cleaning. MIT Press, Cambridge, MA, 1996

    Google Scholar 

  25. Pourahmad S, Ayatollahi SMT, Taheri SM: Fuzzy logistic regression: a new possibilistic model and its application in clinical vague status. Iran J Fuzzy Syst 8(1):1–17, 2011

    Google Scholar 

  26. Zweig MH, Campbell G: Receiver operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577, 1993

    CAS  PubMed  Google Scholar 

  27. Youden WJ: An index for rating diagnostic tests. Cancer 3(1):32–35, 1950

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dheeba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaya, T., Dheeba, J. & Singh, N.A. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System. J Digit Imaging 28, 761–768 (2015). https://doi.org/10.1007/s10278-015-9793-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-015-9793-5

Keywords

Navigation